1
|
Ozair A, Wilding H, Bhanja D, Mikolajewicz N, Glantz M, Grossman SA, Sahgal A, Le Rhun E, Weller M, Weiss T, Batchelor TT, Wen PY, Haas-Kogan DA, Khasraw M, Rudà R, Soffietti R, Vollmuth P, Subbiah V, Bettegowda C, Pham LC, Woodworth GF, Ahluwalia MS, Mansouri A. Leptomeningeal metastatic disease: new frontiers and future directions. Nat Rev Clin Oncol 2025; 22:134-154. [PMID: 39653782 DOI: 10.1038/s41571-024-00970-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2024] [Indexed: 12/12/2024]
Abstract
Leptomeningeal metastatic disease (LMD), encompassing entities of 'meningeal carcinomatosis', neoplastic meningitis' and 'leukaemic/lymphomatous meningitis', arises secondary to the metastatic dissemination of cancer cells from extracranial and certain intracranial malignancies into the leptomeninges and cerebrospinal fluid. The clinical burden of LMD has been increasing secondary to more sensitive diagnostics, aggressive local therapies for discrete brain metastases, and improved management of extracranial disease with targeted and immunotherapeutic agents, resulting in improved survival. However, owing to drug delivery challenges and the unique microenvironment of LMD, novel therapies against systemic disease have not yet translated into improved outcomes for these patients. Underdiagnosis and misdiagnosis are common, response assessment remains challenging, and the prognosis associated with this disease of whole neuroaxis remains extremely poor. The dearth of effective therapies is further challenged by the difficulties in studying this dynamic disease state. In this Review, a multidisciplinary group of experts describe the emerging evidence and areas of active investigation in LMD and provide directed recommendations for future research. Drawing upon paradigm-changing advances in mechanistic science, computational approaches, and trial design, the authors discuss domain-specific and cross-disciplinary strategies for optimizing the clinical and translational research landscape for LMD. Advances in diagnostics, multi-agent intrathecal therapies, cell-based therapies, immunotherapies, proton craniospinal irradiation and ongoing clinical trials offer hope for improving outcomes for patients with LMD.
Collapse
Affiliation(s)
- Ahmad Ozair
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hannah Wilding
- Penn State College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Debarati Bhanja
- Department of Neurosurgery, NYU Langone Medical Center, New York, NY, USA
| | - Nicholas Mikolajewicz
- Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael Glantz
- Department of Neurosurgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Stuart A Grossman
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Odette Cancer Center, University of Toronto, Toronto, Ontario, Canada
- Department of Radiation Oncology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Emilie Le Rhun
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Tobias Weiss
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Tracy T Batchelor
- Center for Neuro-Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Daphne A Haas-Kogan
- Center for Neuro-Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Radiation Oncology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Mustafa Khasraw
- Preston Robert Tisch Brain Tumour Center at Duke, Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science Hospital, Turin, Italy
| | - Riccardo Soffietti
- Division of Neuro-Oncology, Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science Hospital, Turin, Italy
- Department of Oncology, Candiolo Institute for Cancer Research, FPO-IRCCS, Candiolo, Turin, Italy
| | - Philipp Vollmuth
- Division for Computational Radiology and Clinical AI, University Hospital Bonn, Bonn, Germany
- Division for Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vivek Subbiah
- Early Phase Drug Development Program, Sarah Cannon Research Institute, Nashville, TN, USA
| | - Chetan Bettegowda
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lily C Pham
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
- Brain Tumor Program, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Graeme F Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Brain Tumor Program, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Manmeet S Ahluwalia
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA.
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.
| | - Alireza Mansouri
- Department of Neurosurgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA.
- Penn State Cancer Institute, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA.
| |
Collapse
|
2
|
Turcas A, Homorozeanu B, Gheara C, Balan C, Cosnarovici R, Diaconu O, Fekete Z, Mihut E, Olteanu D, Pruteanu P, Tipcu A, Turcas A, Cernea D, Leucuta D, Achimas-Cadariu P. Dynamics and predictors of hematologic toxicity during cranio-spinal irradiation. Rep Pract Oncol Radiother 2024; 29:362-372. [PMID: 39144265 PMCID: PMC11321791 DOI: 10.5603/rpor.101094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/31/2024] [Indexed: 08/16/2024] Open
Abstract
Background Craniospinal irradiation (CSI) is a complex radiotherapy (RT) technique required for treating specific brain tumors and some hematologic malignancies. With large volumes of hematogenous bone marrow (BM) being irradiated, CSI could cause acute hematologic toxicity, leading to treatment interruptions or severe complications. We report on the dynamics and dose/volume predictors of hematologic toxicity during CSI. Materials and methods Pediatric patients (≤ 18years) undergoing CSI in a tertiary cancer center were included. Medical records were retrospectively reviewed for clinical data and blood parameters were collected at baseline and weekly, until four weeks after the end of RT. The BM substructures were contoured, and dose-volume parameters were extracted. We used Wilcoxon rank-sum test to compare quantitative data, Chi square test for qualitative data and receiver operating characteristics (ROC) curves for dose/volume thresholds. Results Fifty-one patients were included. Severe toxicities (grade 3-4) were recorded as follows: 2% anemia, 8% thrombocytopenia, 25% leukopenia, 24% neutropenia. Ninety-eight percent of patients had lymphopenia (grade 1-4) at some point. Twenty-nine percent required granulocyte-colony stimulating factor, 50% had an infection and 8% required a blood transfusion. Dmean > 3.6 Gy and V15 Gy > 10.6% for Pelvic Bones were associated with a higher risk of developing any ≥ G3 toxicities. Dmean > 30-35 Gy to the thoracic and lumbar spine was predictive for G3-4 anemia and thrombocytopenia, and Cervical Spine Dmean > 30 Gy was associated with ≥ G3 neutropenia. Conclusion CSI was well tolerated, without life-threatening complications in our cohort, but hematologic toxicity was frequent, with severity increasing with higher mean doses delivered to the hematogenous BM and larger volumes of BM receiving 30-35 Gy.
Collapse
Affiliation(s)
- Andrada Turcas
- Radiotherapy Department, The Oncology Institute “Prof. Dr. Ion Chiricuta”, Cluj-Napoca, Romania
- Oncology Department, The University of Medicine and Pharmacy “Iuliu Hatieganu”, Cluj-Napoca, Romania
| | - Bianca Homorozeanu
- Radiotherapy Department, The Oncology Institute “Prof. Dr. Ion Chiricuta”, Cluj-Napoca, Romania
- Oncology Department, The University of Medicine and Pharmacy “Iuliu Hatieganu”, Cluj-Napoca, Romania
| | - Cristina Gheara
- Radiotherapy Department, The Oncology Institute “Prof. Dr. Ion Chiricuta”, Cluj-Napoca, Romania
- Faculty of Physics, “Babes-Bolyai” University, Cluj-Napoca, Romania
| | - Cristina Balan
- Radiotherapy Department, The Oncology Institute “Prof. Dr. Ion Chiricuta”, Cluj-Napoca, Romania
- Faculty of Physics, “Babes-Bolyai” University, Cluj-Napoca, Romania
| | - Rodica Cosnarovici
- Paediatric Oncology Department, The Oncology Institute “Prof. Dr. Ion Chiricuta”, Cluj-Napoca, Romania
| | - Oana Diaconu
- Radiotherapy Department, The Oncology Institute “Prof. Dr. Ion Chiricuta”, Cluj-Napoca, Romania
- Faculty of Physics, “Babes-Bolyai” University, Cluj-Napoca, Romania
| | - Zsolt Fekete
- Radiotherapy Department, The Oncology Institute “Prof. Dr. Ion Chiricuta”, Cluj-Napoca, Romania
- Oncology Department, The University of Medicine and Pharmacy “Iuliu Hatieganu”, Cluj-Napoca, Romania
| | - Emilia Mihut
- Paediatric Oncology Department, The Oncology Institute “Prof. Dr. Ion Chiricuta”, Cluj-Napoca, Romania
| | - Diana Olteanu
- Paediatric Oncology Department, The Oncology Institute “Prof. Dr. Ion Chiricuta”, Cluj-Napoca, Romania
| | - Paula Pruteanu
- Paediatric Oncology Department, The Oncology Institute “Prof. Dr. Ion Chiricuta”, Cluj-Napoca, Romania
| | - Alexandru Tipcu
- Radiotherapy Department, The Oncology Institute “Prof. Dr. Ion Chiricuta”, Cluj-Napoca, Romania
- Oncology Department, The University of Medicine and Pharmacy “Iuliu Hatieganu”, Cluj-Napoca, Romania
| | - Adrian Turcas
- Oncology Department, The Oncology Institute “Prof. Dr. Ion Chiricuta”, Cluj-Napoca, Romania
| | - Dana Cernea
- Radiotherapy Department, The Oncology Institute “Prof. Dr. Ion Chiricuta”, Cluj-Napoca, Romania
| | - Daniel Leucuta
- Department of Medical Informatics and Biostatistics, University of Medicine and Pharmacy “Iuliu Hatieganu”, Cluj-Napoca, Romania
| | - Patriciu Achimas-Cadariu
- Oncology Department, The University of Medicine and Pharmacy “Iuliu Hatieganu”, Cluj-Napoca, Romania
- Surgical Oncology Department, The Oncology Institute “Prof. Dr. Ion Chiricuta”, Cluj-Napoca, Romania
| |
Collapse
|
3
|
Kumthekar P, Le Rhun E. Brain Metastases and Leptomeningeal Disease. Continuum (Minneap Minn) 2023; 29:1727-1751. [PMID: 38085896 DOI: 10.1212/con.0000000000001354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
OBJECTIVE Central nervous system (CNS) metastases include brain parenchymal, spinal cord, and leptomeningeal metastases. This article discusses the diagnostic and therapeutic advances of the last decade that have improved outcomes for patients with these CNS metastases. LATEST DEVELOPMENTS The diagnostic tools for CNS metastases, particularly leptomeningeal disease, have evolved over the past decade with respect to advancements in CSF analysis. Multiple medical therapies are now available for brain metastasis treatment that have shown CNS efficacy, including targeted therapies and antibody-drug conjugates. Molecular testing for CNS metastases has become more common and the repertoire of molecularly targeted therapies continues to expand. Advancements in radiation therapy, including improvements in stereotactic radiation techniques, whole-brain radiation with hippocampal avoidance, and proton beam radiation, have changed the radiation management of patients with CNS metastases. New intrathecal agents are currently being tested for the management of leptomeningeal metastases. ESSENTIAL POINTS CNS metastases are far more common than primary brain tumors and are increasing in prevalence in the setting of improved treatments and prolonged survival in patients with systemic cancers. There have been many changes in the diagnostics and treatment of CNS metastases, yielding subsequent improvements in patient outcomes with further advancements on the horizon.
Collapse
|
4
|
Chew SM, Seidman AD. New strategies for the treatment of breast cancer with leptomeningeal metastasis. Curr Opin Oncol 2023; 35:500-506. [PMID: 37820086 DOI: 10.1097/cco.0000000000000988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
PURPOSE OF REVIEW Leptomeningeal metastasis is a complication of metastatic breast cancer that has a rising incidence likely due to the increased availability of novel systemic therapies, which have improved survival with better extracranial disease control but with limited intracranial efficacy. A poor prognosis of less than 6 months has historically been associated with leptomeningeal metastasis and it is often an exclusion factor for enrollment in clinical trials. There are limited evidence-based data supporting use of therapeutics in leptomeningeal metastasis patients and recommendations are largely derived from retrospective reports and small prospective studies. However, in recent years, there has been a surge in effective modern therapeutics with promising intracranial activity. RECENT FINDINGS The study aims to review the most recent updates in the management of leptomeningeal metastasis in breast cancer. We discuss the effectiveness and limitations of intrathecal administration, predictive biomarkers in the cerebrospinal fluid, proton radiation therapy and promising new systemic therapies such as antibody drug conjugates. SUMMARY Ongoing development of clinical trials that allow inclusion of leptomeningeal metastasis are essential for establishing efficacy potential and discovering new treatment options in this population of great unmet need.
Collapse
Affiliation(s)
- Sonya M Chew
- Breast Medicine Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | |
Collapse
|
5
|
Tewarie IA, Senko AW, Jessurun CAC, Zhang AT, Hulsbergen AFC, Rendon L, McNulty J, Broekman MLD, Peng LC, Smith TR, Phillips JG. Predicting leptomeningeal disease spread after resection of brain metastases using machine learning. J Neurosurg 2023; 138:1561-1569. [PMID: 36272119 DOI: 10.3171/2022.8.jns22744] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/25/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The incidence of leptomeningeal disease (LMD) has increased as treatments for brain metastases (BMs) have improved and patients with metastatic disease are living longer. Sample sizes of individual studies investigating LMD after surgery for BMs and its risk factors have been limited, ranging from 200 to 400 patients at risk for LMD, which only allows the use of conventional biostatistics. Here, the authors used machine learning techniques to enhance LMD prediction in a cohort of surgically treated BMs. METHODS A conditional survival forest, a Cox proportional hazards model, an extreme gradient boosting (XGBoost) classifier, an extra trees classifier, and logistic regression were trained. A synthetic minority oversampling technique (SMOTE) was used to train the models and handle the inherent class imbalance. Patients were divided into an 80:20 training and test set. Fivefold cross-validation was used on the training set for hyperparameter optimization. Patients eligible for study inclusion were adults who had consecutively undergone neurosurgical BM treatment, had been admitted to Brigham and Women's Hospital from January 2007 through December 2019, and had a minimum of 1 month of follow-up after neurosurgical treatment. RESULTS A total of 1054 surgically treated BM patients were included in this analysis. LMD occurred in 168 patients (15.9%) at a median of 7.05 months after BM diagnosis. The discrimination of LMD occurrence was optimal using an XGboost algorithm (area under the curve = 0.83), and the time to LMD was prognosticated evenly by the random forest algorithm and the Cox proportional hazards model (C-index = 0.76). The most important feature for both LMD classification and regression was the BM proximity to the CSF space, followed by a cerebellar BM location. Lymph node metastasis of the primary tumor at BM diagnosis and a cerebellar BM location were the strongest risk factors for both LMD occurrence and time to LMD. CONCLUSIONS The outcomes of LMD patients in the BM population are predictable using SMOTE and machine learning. Lymph node metastasis of the primary tumor at BM diagnosis and a cerebellar BM location were the strongest LMD risk factors.
Collapse
Affiliation(s)
- Ishaan Ashwini Tewarie
- 1Department of Neurosurgery, Computational Neuroscience Outcomes Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- 4Department of Neurosurgery, Leiden Medical Center, Leiden, The Netherlands; and
| | - Alexander W Senko
- 1Department of Neurosurgery, Computational Neuroscience Outcomes Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Charissa A C Jessurun
- 1Department of Neurosurgery, Computational Neuroscience Outcomes Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- 3Department of Neurosurgery, Haaglanden Medical Center, The Hague
- 4Department of Neurosurgery, Leiden Medical Center, Leiden, The Netherlands; and
| | - Abigail Tianai Zhang
- 1Department of Neurosurgery, Computational Neuroscience Outcomes Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alexander F C Hulsbergen
- 1Department of Neurosurgery, Computational Neuroscience Outcomes Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- 3Department of Neurosurgery, Haaglanden Medical Center, The Hague
- 4Department of Neurosurgery, Leiden Medical Center, Leiden, The Netherlands; and
| | - Luis Rendon
- 1Department of Neurosurgery, Computational Neuroscience Outcomes Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jack McNulty
- 1Department of Neurosurgery, Computational Neuroscience Outcomes Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Marike L D Broekman
- 1Department of Neurosurgery, Computational Neuroscience Outcomes Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- 3Department of Neurosurgery, Haaglanden Medical Center, The Hague
- 4Department of Neurosurgery, Leiden Medical Center, Leiden, The Netherlands; and
| | - Luke C Peng
- 1Department of Neurosurgery, Computational Neuroscience Outcomes Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Timothy R Smith
- 1Department of Neurosurgery, Computational Neuroscience Outcomes Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - John G Phillips
- 1Department of Neurosurgery, Computational Neuroscience Outcomes Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- 5Department of Radiation Oncology, Tennessee Oncology, Nashville, Tennessee
| |
Collapse
|
6
|
Leptomeningeal metastases in non-small cell lung cancer: Diagnosis and treatment. Lung Cancer 2022; 174:1-13. [PMID: 36206679 DOI: 10.1016/j.lungcan.2022.09.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/08/2022] [Accepted: 09/27/2022] [Indexed: 02/01/2023]
Abstract
Leptomeningeal metastasis (LM) is a rare complication of non-small cell lung cancer (NSCLC) with highly mortality. LM will occur once tumor cells spread to the cerebrospinal fluid (CSF) space. Patients may suffer blindness, paralysis, and mental disorders that seriously affect their quality of life. There is a clear unmet need to improve the efficacy of diagnosis and treatment of LM. To better solve this problem, it is helpful to clarify the potential mechanisms of LM. Clinical manifestations, magnetic resonance imaging, and CSF biopsy are the key components in the diagnosis of NSCLC with LM. CSF cytology is insufficient and should be combined with liquid biology. The application of radiotherapy, intrathecal treatment, targeted therapy and immunotherapy provides more options for LM patients. Each treatment has a particular level of efficacy and can be used alone or in combination for individual patients. New technologies in radiotherapy, drug repositioning in intrathecal treatment, and the higher CSF permeability in TKIs have brought new breakthroughs in the treatment of LM. This review focused on clarifying the potential mechanisms, discussing the major clinical challenges, and summarizing recent advances in the diagnosis and treatment of LM from NSCLC. Future research is essential to improve the efficiency of diagnosis, to optimize therapy and to enhance patient prognosis.
Collapse
|
7
|
Guyer G, Mueller S, Koechli C, Frei D, Volken W, Bertholet J, Mackeprang PH, Loebner HA, Aebersold DM, Manser P, Fix MK. Enabling non-isocentric dynamic trajectory radiotherapy by integration of dynamic table translations. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac840d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 07/25/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. The purpose of this study is to develop a treatment planning process (TPP) for non-isocentric dynamic trajectory radiotherapy (DTRT) using dynamic gantry rotation, collimator rotation, table rotation, longitudinal, vertical and lateral table translations and intensity modulation and to validate the dosimetric accuracy. Approach. The TPP consists of two steps. First, a path describing the dynamic gantry rotation, collimator rotation and dynamic table rotation and translations is determined. Second, an optimization of the intensity modulation along the path is performed. We demonstrate the TPP for three use cases. First, a non-isocentric DTRT plan for a brain case is compared to an isocentric DTRT plan in terms of dosimetric plan quality and delivery time. Second, a non-isocentric DTRT plan for a craniospinal irradiation (CSI) case is compared to a multi-isocentric intensity modulated radiotherapy (IMRT) plan. Third, a non-isocentric DTRT plan for a bilateral breast case is compared to a multi-isocentric volumetric modulated arc therapy (VMAT) plan. The non-isocentric DTRT plans are delivered on a TrueBeam in developer mode and their dosimetric accuracy is validated using radiochromic films. Main results. The non-isocentric DTRT plan for the brain case is similar in dosimetric plan quality and delivery time to the isocentric DTRT plan but is expected to reduce the risk of collisions. The DTRT plan for the CSI case shows similar dosimetric plan quality while reducing the delivery time by 45% in comparison with the IMRT plan. The DTRT plan for the breast case showed better treatment plan quality in comparison with the VMAT plan. The gamma passing rates between the measured and calculated dose distributions are higher than 95% for all three plans. Significance. The versatile benefits of non-isocentric DTRT are demonstrated with three use cases, namely reduction of collision risk, reduced setup and delivery time and improved dosimetric plan quality.
Collapse
|
8
|
Pawłowska E, Romanowska A, Jassem J. Radiotherapy for Leptomeningeal Carcinomatosis in Breast Cancer Patients: A Narrative Review. Cancers (Basel) 2022; 14:cancers14163899. [PMID: 36010893 PMCID: PMC9405891 DOI: 10.3390/cancers14163899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/08/2022] [Accepted: 08/08/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Leptomeningeal carcinomatosis (LC) is a rare event in breast cancer (BC) patients that carries an abysmal prognosis. Little progress has been made in this field in the last few decades. Despite innovations in radiotherapy (RT), there is no univocal evidence of its impact on survival. Due to the rarity of the diagnosis, only a few prospective trials have evaluated the role of RT for LC in BC. Nonetheless, most BC patients with LC currently receive RT, depending on local protocols and individual convictions. This review presents the current knowledge on the indications and feasibility of RT for LC in BC, focusing on new technologies and perspectives. Abstract Leptomeningeal carcinomatosis (LC), defined as the infiltration of the leptomeninges by cancer cells, is a rare oncological event with the most common etiology being breast cancer (BC), lung cancer, and melanoma. Despite innovations in radiotherapy (RT), firm evidence of its impact on survival is lacking, and concerns are related to its possible neurotoxicity. Owing to a paucity of data, the optimal treatment strategy for LC remains unknown. This review discusses current approaches, indications, and contraindications for various forms of RT for LC in BC. A separate section is dedicated to new RT techniques, such as proton therapy. We also summarize ongoing clinical trials evaluating the role of RT in patients with LC.
Collapse
|
9
|
Advances in the Diagnosis and Treatment of Leptomeningeal Disease. Curr Neurol Neurosci Rep 2022; 22:413-425. [PMID: 35588045 DOI: 10.1007/s11910-022-01198-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2022] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Leptomeningeal disease (LMD) is a rare, late complication of systemic cancer and is associated with significant neurological morbidity and high mortality. Here we provide an overview of this condition, summarizing key recent research findings and clinical practice trends in its diagnosis and treatment. We also review current clinical trials for LMD. RECENT FINDINGS Improved molecular diagnostic tools are in development to enable more sensitive detection of LMD, including circulating tumor cells and circulating tumor DNA. The use of targeted and CNS-penetrant therapeutics has shown survival improvements with tyrosine kinase inhibitors, antibody-drug conjugates, and select chemotherapy. However, these studies have primarily been phase I/II and retrospective analyses. There remains a dearth of clinical trials that include LMD patients. The combination of patient-specific molecular information and novel therapeutic approaches holds significant promise for improving outcomes in patients with LMD.
Collapse
|