1
|
Improta L, Passa R, Pagnoni C, Angelucci M, Alloni R, Valeri S. Challenges, Treatment Strategies, and Surgical Techniques in the Management of Spermatic Cord Sarcomas. Ann Surg Oncol 2025; 32:2971-2978. [PMID: 39719513 DOI: 10.1245/s10434-024-16748-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/11/2024] [Indexed: 12/26/2024]
Abstract
Spermatic cord sarcomas (SCS) are a group of mesenchymal tumors whose rarity and anatomical location often lead to clinical misdiagnosis such as inguinal hernia, testicular tumor, or other conditions. Any inguinoscrotal mass with suspicious characteristics should prompt clinicians to perform imaging assessments (such as ultrasound or, in uncertain cases, magnetic resonance imaging (MRI)) and refer the patient promptly to a specialized center. Histological characterization of all suspicious masses via percutaneous biopsy is recommended, with staging completed through computed tomography (CT) scan for confirmed cases. Optimal management is multidisciplinary and should consider both the tumor's histological subtype and specific characteristics of the tumor and patient. Radiotherapy and chemotherapy, while awaiting more robust data in the literature, are valuable adjuncts to surgery, which remains the cornerstone of treatment. Surgery should also be proposed for patients who initially underwent nonspecialist procedures, as a completion approach. The surgical strategy involves en bloc resection through radical orchifunicolectomy, ipsilateral hemiscrotectomy, ligation of the spermatic cord at the internal inguinal ring, and, where necessary, resection of the inguinal canal. Reconstruction may employ mesh or pedicled flaps. The prognosis of SCS, when treated at referral centers, is superior to that of mesenchymal tumors at other sites, underscoring the need for early recognition and prompt multidisciplinary care.
Collapse
Affiliation(s)
- Luca Improta
- Soft Tissue Sarcoma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Roberto Passa
- Soft Tissue Sarcoma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy.
| | - Chiara Pagnoni
- Soft Tissue Sarcoma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Michela Angelucci
- Soft Tissue Sarcoma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Rossana Alloni
- Soft Tissue Sarcoma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Sergio Valeri
- Soft Tissue Sarcoma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| |
Collapse
|
2
|
Ghosh A, Li H, Towbin A, Turpin B, Trout A. T2-weighted MRI radiomics for the prediction of pediatric and young adult rhabdomyosarcoma alveolar subtype and distant metastasis: a pilot study. Pediatr Radiol 2025:10.1007/s00247-025-06205-6. [PMID: 40100409 DOI: 10.1007/s00247-025-06205-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 03/20/2025]
Abstract
INTRODUCTION Rhabdomyosarcomas are the most common soft tissue sarcoma in children. While treatment outcomes have improved, risk-based therapy classification relies on staging and tumor subtypes for therapeutic planning. OBJECTIVE This study investigated the utility of T2-weighted MR radiomics features and machine learning models in identifying the presence of distant metastasis and alveolar histological subtypes at baseline imaging in children diagnosed with rhabdomyosarcoma. MATERIALS AND METHODS This retrospective cross-sectional study utilized MRIs from 86 patients, 49 (median age (IQR) 59 months (37-161), alveolar subtype=15, distant metastasis=9) of whom had been imaged at outside imaging centers (training set); and 37 (median age 52 months (24-164), alveolar subtype=14, distant metastasis=8) of whom were imaged at our institution (holdout validation set). Radiomic features were extracted from T2-weighted images. We selected features that demonstrated intra-scan repeatability and used maximum relevance and minimum redundancy supervised feature selection to identify the 50 most important features. Lasso logistic regression and support vector machine (SVM) classifiers were trained to predict binary outcomes. The median of all predictions for a given patient was used as patient-level predictions. DeLong's test compared the area under the receiver operating characteristic curves (AUC). Cut-offs obtained by maximizing the Youden index were evaluated on an external validation set, and accuracy metrics were reported. RESULTS On the validation set, the Lasso and SVM classifiers obtained patient level AUCs of 0.76 (95% CI 0.59-0.94) and 0.73 (0.54-0.92), respectively, in predicting alveolar subtype, with the Lasso regressor obtaining 71.4% (41.9-91.6) sensitivity and 60.9% (38.5-80.3) specificity. When predicting the presence of distant metastasis, the Lasso and SVM classifier had AUCs of 0.81 (0.67-0.95) and 0.77 (0.58-0.97), respectively. There were no differences between model performance (P>0.05). A total of 12 and 18 features had nonzero coefficients in the Lasso regressors for predicting alveolar subtype and tumor metastasis, respectively. CONCLUSION MRI radiomics from baseline T2-weighted MRI demonstrated potential in predicting alveolar subtype and distant metastatic disease at presentation. Larger studies are needed to explore multinomial multiclass models for better prognostication of pediatric rhabdomyosarcomas.
Collapse
Affiliation(s)
- Adarsh Ghosh
- Cincinnati Children's Hospital Medical Center, Cincinnati, USA.
- Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA.
| | - Hailong Li
- Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | | | - Brian Turpin
- Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | - Andrew Trout
- Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| |
Collapse
|
3
|
Cassandri M, Porrazzo A, Pomella S, Noce B, Zwergel C, Aiello FA, Vulcano F, Milazzo L, Camero S, Pajalunga D, Spada M, Manzi V, Gravina GL, Codenotti S, Piccione M, Tomaciello M, Signore M, Barillari G, Marchese C, Fanzani A, De Angelis B, Quintarelli C, Vakoc CR, Chen EY, Megiorni F, Locatelli F, Valente S, Mai A, Rota R, Marampon F. HDAC3 genetic and pharmacologic inhibition radiosensitizes fusion positive rhabdomyosarcoma by promoting DNA double-strand breaks. Cell Death Discov 2024; 10:351. [PMID: 39107280 PMCID: PMC11303816 DOI: 10.1038/s41420-024-02115-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/16/2024] [Accepted: 07/29/2024] [Indexed: 08/09/2024] Open
Abstract
Radiotherapy (RT) plays a critical role in the management of rhabdomyosarcoma (RMS), the prevalent soft tissue sarcoma in childhood. The high risk PAX3-FOXO1 fusion-positive subtype (FP-RMS) is often resistant to RT. We have recently demonstrated that inhibition of class-I histone deacetylases (HDACs) radiosensitizes FP-RMS both in vitro and in vivo. However, HDAC inhibitors exhibited limited success on solid tumors in human clinical trials, at least in part due to the presence of off-target effects. Hence, identifying specific HDAC isoforms that can be targeted to radiosensitize FP-RMS is imperative. We, here, found that only HDAC3 silencing, among all class-I HDACs screened by siRNA, radiosensitizes FP-RMS cells by inhibiting colony formation. Thus, we dissected the effects of HDAC3 depletion using CRISPR/Cas9-dependent HDAC3 knock-out (KO) in FP-RMS cells, which resulted in Endoplasmatic Reticulum Stress activation, ERK inactivation, PARP1- and caspase-dependent apoptosis and reduced stemness when combined with irradiation compared to single treatments. HDAC3 loss-of-function increased DNA damage in irradiated cells augmenting H2AX phosphorylation and DNA double-strand breaks (DSBs) and counteracting irradiation-dependent activation of ATM and DNA-Pkcs as well as Rad51 protein induction. Moreover, HDAC3 depletion hampers FP-RMS tumor growth in vivo and maximally inhibits the growth of irradiated tumors compared to single approaches. We, then, developed a new HDAC3 inhibitor, MC4448, which showed specific cell anti-tumor effects and mirrors the radiosensitizing effects of HDAC3 depletion in vitro synergizing with ERKs inhibition. Overall, our findings dissect the pro-survival role of HDAC3 in FP-RMS and suggest HDAC3 genetic or pharmacologic inhibition as a new promising strategy to overcome radioresistance in this tumor.
Collapse
Affiliation(s)
- Matteo Cassandri
- Department of Radiotherapy, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Antonella Porrazzo
- Department of Radiotherapy, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Silvia Pomella
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Beatrice Noce
- Department of Drug Chemistry and Technologies, "Sapienza" University of Rome, Rome, Italy
| | - Clemens Zwergel
- Department of Drug Chemistry and Technologies, "Sapienza" University of Rome, Rome, Italy
| | - Francesca Antonella Aiello
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesca Vulcano
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Luisa Milazzo
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Simona Camero
- Department of Life Sciences, Health and Health Professions, Link Campus University, Rome, Italy
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Deborah Pajalunga
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Massimo Spada
- Center of Animal Research and Welfare, Istituto Superiore di Sanità, Rome, Italy
| | - Valeria Manzi
- Department of Radiotherapy, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanni Luca Gravina
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Silvia Codenotti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Michela Piccione
- Confocal Microscopy Core Facility, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Miriam Tomaciello
- Department of Radiotherapy, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| | - Michele Signore
- RPPA Unit, Proteomics Area, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Cinzia Marchese
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Alessandro Fanzani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Biagio De Angelis
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Concetta Quintarelli
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Eleanor Y Chen
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Francesca Megiorni
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Franco Locatelli
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Life Sciences and Public Health, Catholic University of the Sacred Heart, Rome, Italy
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, "Sapienza" University of Rome, Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, "Sapienza" University of Rome, Rome, Italy
- Pasteur Institute, Cenci-Bolognetti Foundation, "Sapienza" University of Rome, Rome, Italy
| | - Rossella Rota
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesco Marampon
- Department of Radiotherapy, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy.
| |
Collapse
|
4
|
Chmiel P, Krotewicz M, Szumera-Ciećkiewicz A, Bartnik E, Czarnecka AM, Rutkowski P. Review on Lymph Node Metastases, Sentinel Lymph Node Biopsy, and Lymphadenectomy in Sarcoma. Curr Oncol 2024; 31:307-323. [PMID: 38248105 PMCID: PMC10814427 DOI: 10.3390/curroncol31010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/17/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Soft tissue sarcomas (STS) originating from connective tissue rarely affect the lymph nodes. However, involvement of lymph nodes in STS is an important aspect of prognosis and treatment. Currently, there is no consensus on the diagnosis and management of lymph node metastases in STS. The key risk factor for nodal involvement is the histological subtype of sarcoma. Radiological and pathological evaluation seems to be the most effective method of assessing lymph nodes in these neoplasms. Thus, sentinel lymph node biopsy (SLNB), which has been shown to be valuable in the management of melanoma or breast cancer, may also be a beneficial diagnostic option in some high-risk STS subtypes. This review summarizes data on the risk factors and clinical characteristics of lymph node involvement in STS. Possible management and therapeutic options are also discussed.
Collapse
Affiliation(s)
- Paulina Chmiel
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (P.C.); (M.K.); (P.R.)
| | - Maria Krotewicz
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (P.C.); (M.K.); (P.R.)
| | - Anna Szumera-Ciećkiewicz
- Department of Pathology, Maria Sklodowska Curie National Research Institute of Oncology, 02-781 Warsaw, Poland;
| | - Ewa Bartnik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland;
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Anna M. Czarnecka
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (P.C.); (M.K.); (P.R.)
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (P.C.); (M.K.); (P.R.)
| |
Collapse
|
5
|
Zarrabi A, Perrin D, Kavoosi M, Sommer M, Sezen S, Mehrbod P, Bhushan B, Machaj F, Rosik J, Kawalec P, Afifi S, Bolandi SM, Koleini P, Taheri M, Madrakian T, Łos MJ, Lindsey B, Cakir N, Zarepour A, Hushmandi K, Fallah A, Koc B, Khosravi A, Ahmadi M, Logue S, Orive G, Pecic S, Gordon JW, Ghavami S. Rhabdomyosarcoma: Current Therapy, Challenges, and Future Approaches to Treatment Strategies. Cancers (Basel) 2023; 15:5269. [PMID: 37958442 PMCID: PMC10650215 DOI: 10.3390/cancers15215269] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/18/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023] Open
Abstract
Rhabdomyosarcoma is a rare cancer arising in skeletal muscle that typically impacts children and young adults. It is a worldwide challenge in child health as treatment outcomes for metastatic and recurrent disease still pose a major concern for both basic and clinical scientists. The treatment strategies for rhabdomyosarcoma include multi-agent chemotherapies after surgical resection with or without ionization radiotherapy. In this comprehensive review, we first provide a detailed clinical understanding of rhabdomyosarcoma including its classification and subtypes, diagnosis, and treatment strategies. Later, we focus on chemotherapy strategies for this childhood sarcoma and discuss the impact of three mechanisms that are involved in the chemotherapy response including apoptosis, macro-autophagy, and the unfolded protein response. Finally, we discuss in vivo mouse and zebrafish models and in vitro three-dimensional bioengineering models of rhabdomyosarcoma to screen future therapeutic approaches and promote muscle regeneration.
Collapse
Affiliation(s)
- Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Türkiye; (A.Z.); (A.Z.)
| | - David Perrin
- Section of Orthopaedic Surgery, Department of Surgery, University of Manitoba, Winnipeg, MB R3E 0V9, Canada; (D.P.); (M.S.)
| | - Mahboubeh Kavoosi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Biotechnology Center, Silesian University of Technology, 8 Krzywousty St., 44-100 Gliwice, Poland;
| | - Micah Sommer
- Section of Orthopaedic Surgery, Department of Surgery, University of Manitoba, Winnipeg, MB R3E 0V9, Canada; (D.P.); (M.S.)
- Section of Physical Medicine and Rehabilitation, Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Serap Sezen
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Türkiye; (S.S.); (N.C.); (B.K.)
| | - Parvaneh Mehrbod
- Department of Influenza and Respiratory Viruses, Pasteur Institute of Iran, Tehran 1316943551, Iran;
| | - Bhavya Bhushan
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Department of Anatomy and Cell Biology, School of Biomedical Sciences, Faculty of Science, McGill University, Montreal, QC H3A 0C7, Canada
| | - Filip Machaj
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Jakub Rosik
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Philip Kawalec
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Section of Neurosurgery, Department of Surgery, University of Manitoba, Health Sciences Centre, Winnipeg, MB R3A 1R9, Canada
| | - Saba Afifi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Seyed Mohammadreza Bolandi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Peiman Koleini
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Mohsen Taheri
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran;
| | - Tayyebeh Madrakian
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838695, Iran; (T.M.); (M.A.)
| | - Marek J. Łos
- Biotechnology Center, Silesian University of Technology, 8 Krzywousty St., 44-100 Gliwice, Poland;
| | - Benjamin Lindsey
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Nilufer Cakir
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Türkiye; (S.S.); (N.C.); (B.K.)
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Türkiye; (A.Z.); (A.Z.)
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963114, Iran;
| | - Ali Fallah
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Tuzla, Istanbul 34956, Türkiye;
| | - Bahattin Koc
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Türkiye; (S.S.); (N.C.); (B.K.)
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Tuzla, Istanbul 34956, Türkiye;
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Türkiye
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Türkiye;
| | - Mazaher Ahmadi
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838695, Iran; (T.M.); (M.A.)
| | - Susan Logue
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01007 Vitoria-Gasteiz, Spain;
- University Institute for Regenerative Medicine and Oral Implantology–UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
| | - Stevan Pecic
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, USA;
| | - Joseph W. Gordon
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- College of Nursing, Rady Faculty of Health Science, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Academy of Silesia, Faculty of Medicine, Rolna 43, 40-555 Katowice, Poland
- Research Institutes of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| |
Collapse
|
6
|
Lian J, Gao L, Yao R, Zhou Y, Sun Q. Case Report: A 13-year-old adolescent diagnosed as malignant phyllodes tumor combined with rhabdomyosarcoma differentiation. Front Oncol 2023; 13:1233208. [PMID: 37841438 PMCID: PMC10569689 DOI: 10.3389/fonc.2023.1233208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/01/2023] [Indexed: 10/17/2023] Open
Abstract
Phyllodes tumor (PT) is an infrequent type of breast neoplasm, constituting a mere 0.5%-1.5% of the entirety of breast tumors. The malignant phyllodes tumor (MPT) comprises only 15% of all phyllodes tumors, and its transformation into rhabdomyosarcoma (RMS) is exceedingly rare in clinical practice. Given its insensitivity to chemotherapy and radiotherapy, treatment options for MPT patients are limited, leaving complete surgical resection as the only option. Therefore, it is imperative to investigate the effective utilization of the heterogeneous differentiation characteristics of MPT to expand treatment alternatives for these patients. In this case report, we represent a 13-year-old adolescent diagnosed with giant breast MPT with RMS differentiation and pulmonary metastasis. The initial step in the treatment process involved radical surgical resection, followed by the administration of four cycles of VDC/IC chemotherapy, which is widely recognized as the standard chemotherapy for RMS. Regrettably, the delay in initiating chemotherapy resulted in minimal observable changes in the size of the pulmonary metastatic nodule. Additionally, a comprehensive literature review on the characterization of MPT with heterogeneous differentiation was conducted to enhance comprehension of the diagnosis and treatment of this uncommon disease in clinical practice. Meanwhile, this case also reminds the doctors that when we diagnose a patient as MPT, it is crucial to consider its heterogenous nature and promptly initiate adjuvant treatment. By targeting the differentiation element of MPT, it becomes feasible to overcome the previously perceived limitation of surgical intervention as the sole treatment option.
Collapse
Affiliation(s)
| | | | | | - Yidong Zhou
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiang Sun
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Tian Z, Yao W. Chemotherapeutic drugs for soft tissue sarcomas: a review. Front Pharmacol 2023; 14:1199292. [PMID: 37637411 PMCID: PMC10450752 DOI: 10.3389/fphar.2023.1199292] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/03/2023] [Indexed: 08/29/2023] Open
Abstract
Despite the low incidence of soft tissue sarcomas (STSs), hundreds of thousands of new STS cases are diagnosed annually worldwide, and approximately half of them eventually progress to advanced stages. Currently, chemotherapy is the first-line treatment for advanced STSs. There are difficulties in selecting appropriate drugs for multiline chemotherapy, or for combination treatment of different STS histological subtypes. In this study, we first comprehensively reviewed the efficacy of various chemotherapeutic drugs in the treatment of STSs, and then described the current status of sensitive drugs for different STS subtypes. anthracyclines are the most important systemic treatment for advanced STSs. Ifosfamide, trabectedin, gemcitabine, taxanes, dacarbazine, and eribulin exhibit certain activities in STSs. Vinca alkaloid agents (vindesine, vinblastine, vinorelbine, vincristine) have important therapeutic effects in specific STS subtypes, such as rhabdomyosarcoma and Ewing sarcoma family tumors, whereas their activity in other subtypes is weak. Other chemotherapeutic drugs (methotrexate, cisplatin, etoposide, pemetrexed) have weak efficacy in STSs and are rarely used. It is necessary to select specific second- or above-line chemotherapeutic drugs depending on the histological subtype. This review aims to provide a reference for the selection of chemotherapeutic drugs for multi-line therapy for patients with advanced STSs who have an increasingly long survival.
Collapse
Affiliation(s)
| | - Weitao Yao
- Department of Orthopedics, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
8
|
Vaccaro S, Rossetti A, Porrazzo A, Camero S, Cassandri M, Pomella S, Tomaciello M, Macioce G, Pedini F, Barillari G, Marchese C, Rota R, Cenci G, Tombolini M, Newman RA, Yang P, Codenotti S, Fanzani A, Megiorni F, Festuccia C, Minniti G, Gravina GL, Vulcano F, Milazzo L, Marampon F. The botanical drug PBI-05204, a supercritical CO2 extract of Nerium oleander, sensitizes alveolar and embryonal rhabdomyosarcoma to radiotherapy in vitro and in vivo. Front Pharmacol 2022; 13:1071176. [DOI: 10.3389/fphar.2022.1071176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022] Open
Abstract
Treatment of rhabdomyosarcoma (RMS), the most common a soft tissue sarcoma in childhood, provides intensive multimodal therapy, with radiotherapy (RT) playing a critical role for local tumor control. However, since RMS efficiently activates mechanisms of resistance to therapies, despite improvements, the prognosis remains still largely unsatisfactory, mainly in RMS expressing chimeric oncoproteins PAX3/PAX7-FOXO1, and fusion-positive (FP)-RMS. Cardiac glycosides (CGs), plant-derived steroid-like compounds with a selective inhibitory activity of the Na+/K+-ATPase pump (NKA), have shown antitumor and radio-sensitizing properties. Herein, the therapeutic properties of PBI-05204, an extract from Nerium oleander containing the CG oleandrin already studied in phase I and II clinical trials for cancer patients, were investigated, in vitro and in vivo, against FN- and FP-RMS cancer models. PBI-05204 induced growth arrest in a concentration dependent manner, with FP-RMS being more sensitive than FN-RMS, by differently regulating cell cycle regulators and commonly upregulating cell cycle inhibitors p21Waf1/Cip1 and p27Cip1/Kip1. Furthermore, PBI-05204 concomitantly induced cell death on both RMS types and senescence in FN-RMS. Notably, PBI-05204 counteracted in vitro migration and invasion abilities and suppressed the formation of spheroids enriched in CD133+ cancer stem cells (CSCs). PBI-05204 sensitized both cell types to RT by improving the ability of RT to induce G2 growth arrest and counteracting the RT-induced activation of both Non‐Homologous End‐Joining and homologous recombination DSBs repair pathways. Finally, the antitumor and radio-sensitizing proprieties of PBI-05204 were confirmed in vivo. Notably, both in vitro and in vivo evidence confirmed the higher sensitivity to PBI-05204 of FP-RMS. Thus, PBI-05204 represents a valid radio-sensitizing agent for the treatment of RMS, including the intrinsically radio-resistant FP-RMS.
Collapse
|
9
|
Noriega-Álvarez E, Orduña Díez M, Sanz Viedma S, Peiró Valgañón V, Velasco Nuño M, Orcajo Rincón J, Rodríguez Alfonso B, Domínguez Gadea L. Aportaciones de la medicina nuclear en la enfermedad musculoesquelética tumoral maligna en niños. Rev Esp Med Nucl Imagen Mol 2022. [PMID: 36195256 DOI: 10.1016/j.remn.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Pomella S, Porrazzo A, Cassandri M, Camero S, Codenotti S, Milazzo L, Vulcano F, Barillari G, Cenci G, Marchese C, Fanzani A, Megiorni F, Rota R, Marampon F. Translational Implications for Radiosensitizing Strategies in Rhabdomyosarcoma. Int J Mol Sci 2022; 23:13281. [PMID: 36362070 PMCID: PMC9656983 DOI: 10.3390/ijms232113281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 08/13/2024] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of childhood and adolescence that includes FP-RMS, harboring the fusion oncoprotein PAX3/7-FOXO1 and FN-RMS, often mutant in the RAS pathway. Risk stratifications of RMS patients determine different prognostic groups and related therapeutic treatment. Current multimodal therapeutic strategies involve surgery, chemotherapy (CHT) and radiotherapy (RT), but despite the deeper knowledge of response mechanisms underpinning CHT treatment and the technological improvements that characterize RT, local failures and recurrence frequently occur. This review sums up the RMS classification and the management of RMS patients, with special attention to RT treatment and possible radiosensitizing strategies for RMS tumors. Indeed, RMS radioresistance is a clinical problem and further studies aimed at dissecting radioresistant molecular mechanisms are needed to identify specific targets to hit, thus improving RT-induced cytotoxicity.
Collapse
Affiliation(s)
- Silvia Pomella
- Department of Oncohematology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, 00146 Rome, Italy
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Antonella Porrazzo
- Units of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, 00146 Rome, Italy
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, 00161 Rome, Italy
| | - Matteo Cassandri
- Department of Oncohematology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, 00146 Rome, Italy
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, 00161 Rome, Italy
| | - Simona Camero
- Department of Maternal, Infantile and Urological Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Silvia Codenotti
- Department of Molecular and Translational Medicine, Division of Biotechnology, University of Brescia, 25123 Brescia, Italy
| | - Luisa Milazzo
- Department of Oncology and Molecular Medicine, Italian National Institute of Health, 00161 Rome, Italy
| | - Francesca Vulcano
- Department of Oncology and Molecular Medicine, Italian National Institute of Health, 00161 Rome, Italy
| | - Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Giovanni Cenci
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy
| | - Cinzia Marchese
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Alessandro Fanzani
- Department of Molecular and Translational Medicine, Division of Biotechnology, University of Brescia, 25123 Brescia, Italy
| | - Francesca Megiorni
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Rossella Rota
- Department of Oncohematology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, 00146 Rome, Italy
| | - Francesco Marampon
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
11
|
Contributions of nuclear medicine to malignant musculoskeletal tumor disease in children. Rev Esp Med Nucl Imagen Mol 2022; 41:395-407. [DOI: 10.1016/j.remnie.2022.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/05/2022] [Indexed: 11/06/2022]
|
12
|
Camero S, Cassandri M, Pomella S, Milazzo L, Vulcano F, Porrazzo A, Barillari G, Marchese C, Codenotti S, Tomaciello M, Rota R, Fanzani A, Megiorni F, Marampon F. Radioresistance in rhabdomyosarcomas: Much more than a question of dose. Front Oncol 2022; 12:1016894. [PMID: 36248991 PMCID: PMC9559533 DOI: 10.3389/fonc.2022.1016894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/12/2022] [Indexed: 11/15/2022] Open
Abstract
Management of rhabdomyosarcoma (RMS), the most common soft tissue sarcoma in children, frequently accounting the genitourinary tract is complex and requires a multimodal therapy. In particular, as a consequence of the advancement in dose conformity technology, radiation therapy (RT) has now become the standard therapeutic option for patients with RMS. In the clinical practice, dose and timing of RT are adjusted on the basis of patients' risk stratification to reduce late toxicity and side effects on normal tissues. However, despite the substantial improvement in cure rates, local failure and recurrence frequently occur. In this review, we summarize the general principles of the treatment of RMS, focusing on RT, and the main molecular pathways and specific proteins involved into radioresistance in RMS tumors. Specifically, we focused on DNA damage/repair, reactive oxygen species, cancer stem cells, and epigenetic modifications that have been reported in the context of RMS neoplasia in both in vitro and in vivo studies. The precise elucidation of the radioresistance-related molecular mechanisms is of pivotal importance to set up new more effective and tolerable combined therapeutic approaches that can radiosensitize cancer cells to finally ameliorate the overall survival of patients with RMS, especially for the most aggressive subtypes.
Collapse
Affiliation(s)
- Simona Camero
- Department of Maternal, Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Matteo Cassandri
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Rome, Italy
- Department of Oncohematology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Silvia Pomella
- Department of Oncohematology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Luisa Milazzo
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Vulcano
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Antonella Porrazzo
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Rome, Italy
- Units of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCSS), Rome, Italy
| | - Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Cinzia Marchese
- Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Silvia Codenotti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Miriam Tomaciello
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Rome, Italy
| | - Rossella Rota
- Department of Oncohematology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Alessandro Fanzani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Francesca Megiorni
- Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Francesco Marampon
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|