1
|
Freycon C, Lupo PJ, Witkowski L, Budd C, Foulkes WD, Goudie C. A systematic review of the prevalence of pathogenic or likely pathogenic germline variants in individuals with FOXO1 fusion-positive rhabdomyosarcoma. Pediatr Blood Cancer 2023; 70:e30651. [PMID: 37638828 DOI: 10.1002/pbc.30651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/15/2023] [Accepted: 08/20/2023] [Indexed: 08/29/2023]
Abstract
Several cancer predisposition syndromes (CPS) are reported to predispose to rhabdomyosarcoma, most frequently in children with embryonal rhabdomyosarcoma. There are lingering questions over the role of CPS in individuals with alveolar rhabdomyosarcoma (ARMS), which are frequently driven by FOXO1 fusion oncoproteins. We conducted a systematic review to identify patients with FOXO1 fusion-positive ARMS (FP-ARMS) who underwent germline DNA sequencing. We estimated the prevalence of pathogenic/likely pathogenic (P/LP) variants in cancer predisposing genes (CPGs) and of CPSs. We included 19 publications reporting on 191 patients with FP-ARMS. P/LP variants in CPGs were identified in 26/191 (13.6%) patients, nine (4.9%) of which were associated with a CPS diagnosis. Evidence for causal associations between CPSs and FP-ARMS could not be assessed with available data from this review. Only one patient was affected with a CPS known to predispose to rhabdomyosarcoma, Li-Fraumeni syndrome. Typical CPS associations with rhabdomyosarcoma are rare, but not nonexistent, in patients with FP-ARMS. FOXO1 fusion status, alone, is insufficient for clinicians to rely on to distinguish between patients with/without CPS.
Collapse
Affiliation(s)
- Claire Freycon
- Department of Pediatrics, Division of Hematology-Oncology, Montreal Children's Hospital, McGill University Health Centre, Montreal, Quebec, Canada
- Department of Child Health and Human Development, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Philip J Lupo
- Section of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Leora Witkowski
- Department of Child Health and Human Development, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Crystal Budd
- Department of Child Health and Human Development, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | | | - Catherine Goudie
- Department of Pediatrics, Division of Hematology-Oncology, Montreal Children's Hospital, McGill University Health Centre, Montreal, Quebec, Canada
- Department of Child Health and Human Development, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Würtemberger J, Ripperger T, Vokuhl C, Bauer S, Teichert-von Lüttichau I, Wardelmann E, Niemeyer CM, Kratz CP, Schlegelberger B, Hettmer S. Genetic susceptibility in children, adolescents, and young adults diagnosed with soft-tissue sarcomas. Eur J Med Genet 2023; 66:104718. [PMID: 36764384 DOI: 10.1016/j.ejmg.2023.104718] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 10/30/2022] [Accepted: 01/29/2023] [Indexed: 02/11/2023]
Abstract
Soft tissue sarcomas (STS) may arise as a consequence of germline variants in cancer predisposition genes (CPGs). We believe that elucidating germline sarcoma predisposition is critical for understanding disease biology and therapeutic requirements. Participation in surveillance programs may allow for early tumor detection, early initiation of therapy and, ultimately, better outcomes. Among children, adolescents, and adults diagnosed with soft-tissue sarcomas and examined as part of published germline sequencing studies, pathogenic/likely pathogenic (P/LP) variants in CPGs were reported in 7-33% of patients. P/LP germline variants were detected most frequently in TP53, NF1 and BRCA1/2. In this review, we describe reported associations between soft tissue sarcomas and germline variants in CPGs, with mentioning of locally aggressive and benign soft tissue tumors that have important associations with cancer predisposition syndromes. We also discuss recommendations for diagnostic germline genetic testing. Testing for sarcoma-predisposing germline variants should be considered as part of the routine clinical workup and care of any child, adolescent, or adult diagnosed with STS and take into account consequences for the whole family.
Collapse
Affiliation(s)
- Julia Würtemberger
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, Germany
| | - Tim Ripperger
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Christian Vokuhl
- Institute of Pathology, University Hospital Bonn, 53127, Bonn, Germany
| | - Sebastian Bauer
- Department of Oncology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Irene Teichert-von Lüttichau
- Technical University of Munich, School of Medicine, Department of Pediatrics and Children's Cancer Research Center, Kinderklinik München Schwabing, Munich, Germany
| | - Eva Wardelmann
- Gerhard Domagk Institute of Pathology, University Hospital Muenster, Muenster, Germany
| | - Charlotte M Niemeyer
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, Germany
| | - Christian P Kratz
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | | | - Simone Hettmer
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, Germany.
| |
Collapse
|
3
|
Cardoso LCDA, Parra A, Gil CR, Arias P, Gallego N, Romanelli V, Kantaputra PN, Lima L, Llerena Júnior JC, Arberas C, Guillén-Navarro E, Nevado J, Spanish OverGrowth Registry Initiative, Tenorio-Castano J, Lapunzina P. Clinical Spectrum and Tumour Risk Analysis in Patients with Beckwith-Wiedemann Syndrome Due to CDKN1C Pathogenic Variants. Cancers (Basel) 2022; 14:cancers14153807. [PMID: 35954470 PMCID: PMC9367242 DOI: 10.3390/cancers14153807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
Beckwith-Wiedemann syndrome spectrum (BWSp) is an overgrowth disorder caused by imprinting or genetic alterations at the 11p15.5 locus. Clinical features include overgrowth, macroglossia, neonatal hypoglycaemia, omphalocele, hemihyperplasia, cleft palate, and increased neoplasm incidence. The most common molecular defect observed is hypomethylation at the imprinting centre 2 (KCNQ1OT1:TSS DMR) in the maternal allele, which accounts for approximately 60% of cases, although CDKN1C pathogenic variants have been reported in 5-10% of patients, with a higher incidence in familial cases. In this study, we examined the clinical and molecular features of all cases of BWSp identified by the Spanish Overgrowth Registry Initiative with pathogenic or likely pathogenic CDKN1C variants, ascertained by Sanger sequencing or next-generation sequencing, with special focus on the neoplasm incidence, given that there is scarce knowledge of this feature in CDKN1C-associated BWSp. In total, we evaluated 21 cases of BWSp with CDKN1C variants; 19 were classified as classical BWS according to the BWSp scoring classification by Brioude et al. One of our patients developed a mediastinal ganglioneuroma. Our study adds evidence that tumour development in patients with BWSp and CDKN1C variants is infrequent, but it is extremely relevant to the patient's follow-up and supports the high heterogeneity of BWSp clinical features associated with CDKN1C variants.
Collapse
Affiliation(s)
- Leila Cabral de Almeida Cardoso
- INGEMM-Instituto de Genética Médica y Molecular, Instituto de Investigación Sanitaria Hospital La Paz (IdiPAZ), Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Alejandro Parra
- INGEMM-Instituto de Genética Médica y Molecular, Instituto de Investigación Sanitaria Hospital La Paz (IdiPAZ), Hospital Universitario La Paz, 28046 Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, 28046 Madrid, Spain
- ITHACA-European Reference Network, Hospital La Paz, 28046 Madrid, Spain
| | - Cristina Ríos Gil
- INGEMM-Instituto de Genética Médica y Molecular, Instituto de Investigación Sanitaria Hospital La Paz (IdiPAZ), Hospital Universitario La Paz, 28046 Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, 28046 Madrid, Spain
- ITHACA-European Reference Network, Hospital La Paz, 28046 Madrid, Spain
| | - Pedro Arias
- INGEMM-Instituto de Genética Médica y Molecular, Instituto de Investigación Sanitaria Hospital La Paz (IdiPAZ), Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Natalia Gallego
- INGEMM-Instituto de Genética Médica y Molecular, Instituto de Investigación Sanitaria Hospital La Paz (IdiPAZ), Hospital Universitario La Paz, 28046 Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, 28046 Madrid, Spain
- ITHACA-European Reference Network, Hospital La Paz, 28046 Madrid, Spain
| | | | - Piranit Nik Kantaputra
- Department of Orthodontics and Pediatric Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Leonardo Lima
- Instituto Fernandes Figueira IFF/FIOCRUZ, Rio de Janeiro 22250-020, Brazil
| | | | - Claudia Arberas
- Hospital de Niños Dr. Ricardo Gutiérrez, Sección Genética Médica Gallo 1330, C1425EFD CABA, Argentina
| | - Encarna Guillén-Navarro
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, 28046 Madrid, Spain
- Sección Genética Médica, Servicio de Pediatría, Hospital Clínico Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Universidad de Murcia, El Palmar, 30120 Murcia, Spain
| | - Julián Nevado
- INGEMM-Instituto de Genética Médica y Molecular, Instituto de Investigación Sanitaria Hospital La Paz (IdiPAZ), Hospital Universitario La Paz, 28046 Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, 28046 Madrid, Spain
- ITHACA-European Reference Network, Hospital La Paz, 28046 Madrid, Spain
| | | | - Jair Tenorio-Castano
- INGEMM-Instituto de Genética Médica y Molecular, Instituto de Investigación Sanitaria Hospital La Paz (IdiPAZ), Hospital Universitario La Paz, 28046 Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, 28046 Madrid, Spain
- ITHACA-European Reference Network, Hospital La Paz, 28046 Madrid, Spain
| | - Pablo Lapunzina
- INGEMM-Instituto de Genética Médica y Molecular, Instituto de Investigación Sanitaria Hospital La Paz (IdiPAZ), Hospital Universitario La Paz, 28046 Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, 28046 Madrid, Spain
- ITHACA-European Reference Network, Hospital La Paz, 28046 Madrid, Spain
- Correspondence: or ; Tel.: +34-91-727-72-17; Fax: +34-91-207-10-40
| |
Collapse
|
4
|
Hettmer S, Linardic CM, Kelsey A, Rudzinski ER, Vokuhl C, Selfe J, Ruhen O, Shern JF, Khan J, Kovach AR, Lupo PJ, Gatz SA, Schäfer BW, Volchenboum S, Minard-Colin V, Koscielniak E, Hawkins DS, Bisogno G, Sparber-Sauer M, Venkatramani R, Merks JHM, Shipley J. Molecular testing of rhabdomyosarcoma in clinical trials to improve risk stratification and outcome: A consensus view from European paediatric Soft tissue sarcoma Study Group, Children's Oncology Group and Cooperative Weichteilsarkom-Studiengruppe. Eur J Cancer 2022; 172:367-386. [PMID: 35839732 DOI: 10.1016/j.ejca.2022.05.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/27/2022] [Accepted: 05/22/2022] [Indexed: 02/07/2023]
Abstract
Rhabdomyosarcomas (RMSs) are the most common soft tissue sarcomas in children/adolescents less than 18 years of age with an annual incidence of 1-2/million. Inter/intra-tumour heterogeneity raise challenges in clinical, pathological and biological research studies. Risk stratification in European and North American clinical trials previously relied on clinico-pathological features, but now, incorporates PAX3/7-FOXO1-fusion gene status in the place of alveolar histology. International working groups propose a coordinated approach through the INternational Soft Tissue SaRcoma ConsorTium to evaluate the specific genetic abnormalities and generate and integrate molecular and clinical data related to patients with RMS across different trial settings. We review relevant data and present a consensus view on what molecular features should be assessed. In particular, we recommend the assessment of the MYOD1-LR122R mutation for risk escalation, as it has been associated with poor outcomes in spindle/sclerosing RMS and rare RMS with classic embryonal histopathology. The prospective analyses of rare fusion genes beyond PAX3/7-FOXO1 will generate new data linked to outcomes and assessment of TP53 mutations and CDK4 amplification may confirm their prognostic value. Pathogenic/likely pathogenic germline variants in TP53 and other cancer predisposition genes should also be assessed. DNA/RNA profiling of tumours at diagnosis/relapse and serial analyses of plasma samples is recommended where possible to validate potential molecular biomarkers, identify new biomarkers and assess how liquid biopsy analyses can have the greatest benefit. Together with the development of new molecularly-derived therapeutic strategies that we review, a synchronised international approach is expected to enhance progress towards improved treatment assignment, management and outcomes for patients with RMS.
Collapse
Affiliation(s)
- Simone Hettmer
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, Germany
| | - Corinne M Linardic
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA; Department of Pharmacology and Cancer Biology; Duke University of Medicine, Durham, NC, USA
| | - Anna Kelsey
- Department of Paediatric Histopathology, Royal Manchester Children's Hospital, Manchester Foundation Trust, Manchester, UK
| | - Erin R Rudzinski
- Section of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Department of Laboratories, Seattle Children's Hospital, Seattle, WA, USA
| | - Christian Vokuhl
- Section of Pediatric Pathology, Department of Pathology, University Hospital Bonn, Germany
| | - Joanna Selfe
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Olivia Ruhen
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Jack F Shern
- Genetics Branch, Oncogenomics Section, Center for Cancer Research, National Institutes of Health, Bethesda, MD, USA; Pediatric Oncology Branch, Center for Cancer Research, National Institutes of Health, Bethesda, MD, USA
| | - Javed Khan
- Genetics Branch, Oncogenomics Section, Center for Cancer Research, National Institutes of Health, Bethesda, MD, USA
| | - Alexander R Kovach
- Department of Pharmacology and Cancer Biology; Duke University of Medicine, Durham, NC, USA
| | - Philip J Lupo
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Susanne A Gatz
- Institute of Cancer and Genomic Sciences, Cancer Research UK Clinical Trials Unit (CRCTU), University of Birmingham, Birmingham, UK
| | - Beat W Schäfer
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | | | | | - Ewa Koscielniak
- Klinikum der Landeshauptstadt Stuttgart GKAöR, Olgahospital, Stuttgart Cancer Center, Zentrum für Kinder-, Jugend- und Frauenmedizin, Pädiatrie 5 (Pädiatrische Onkologie, Hämatologie, Immunologie), Stuttgart, Germany; Medizinische Fakultät, University of Tübingen, Germany
| | - Douglas S Hawkins
- Seattle Children's Hospital, University of Washington, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Gianni Bisogno
- Hematology Oncology Division, Department of Women's and Children's Health, University of Padova, Padua, Italy
| | - Monika Sparber-Sauer
- Klinikum der Landeshauptstadt Stuttgart GKAöR, Olgahospital, Stuttgart Cancer Center, Zentrum für Kinder-, Jugend- und Frauenmedizin, Pädiatrie 5 (Pädiatrische Onkologie, Hämatologie, Immunologie), Stuttgart, Germany; Medizinische Fakultät, University of Tübingen, Germany
| | - Rajkumar Venkatramani
- Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | | | - Janet Shipley
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK.
| |
Collapse
|
5
|
Drabent P, Fraitag S. Malignant Superficial Mesenchymal Tumors in Children. Cancers (Basel) 2022; 14:cancers14092160. [PMID: 35565289 PMCID: PMC9104419 DOI: 10.3390/cancers14092160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/12/2022] [Accepted: 04/22/2022] [Indexed: 11/16/2022] Open
Abstract
Malignant superficial mesenchymal tumors are a very diverse group of neoplasms with few clinical and radiological discriminatory factors. Hence, some of these cancers are rarely suspected based on clinical and radiological grounds, others may be easily misdiagnosed, and the histological analysis of a biopsy or resection is central in the diagnostic process. In children, the age at presentation is a major element of the differential diagnosis. Some tumors have a very distinct epidemiology, while others may be seen at any age. More recently, the advances in molecular biology have greatly improved the diagnosis of mesenchymal tumors and new entities are still being described. In the present review, we provide an overview of the diversity of malignant superficial mesenchymal tumors in children, including new and/or rare entities. We discuss the important diagnostic features, be they clinical, histological, or molecular. Special attention was given to the genetic features of these tumors, particularly when they were helpful for the diagnosis or treatment.
Collapse
Affiliation(s)
- Philippe Drabent
- Department of Pathology, Necker-Enfants Malades Hospital, APHP, 75015 Paris, France;
- Faculté de Médecine, Université de Paris, 75005 Paris, France
| | - Sylvie Fraitag
- Department of Pathology, Necker-Enfants Malades Hospital, APHP, 75015 Paris, France;
- Faculté de Médecine, Université de Paris, 75005 Paris, France
- Correspondence:
| |
Collapse
|
6
|
Schneider KW, Cost NG, Schultz KAP, Svihovec S, Suttman A. Germline predisposition to genitourinary rhabdomyosarcoma. Transl Androl Urol 2020; 9:2430-2440. [PMID: 33209717 PMCID: PMC7658107 DOI: 10.21037/tau-20-76] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 06/18/2020] [Indexed: 01/11/2023] Open
Abstract
Multiple genetic conditions predispose to the development of rhabdomyosarcoma. Much of the literature on rhabdomyosarcoma in genetic syndromes does not sub-divide the location or the pathology of the sarcomas. Therefore, there are limited data on genitourinary specific associations with certain genetic syndromes. We summarize, here, the primary differential considerations for rhabdomyosarcoma of the genitourinary system. Primary considerations include DICER1 pathogenic variation, Li-Fraumeni syndrome, constitutional mismatch repair deficiency, mosaic variegated aneuploidy, neurofibromatosis type 1, Noonan syndrome, other RASopathies, Costello syndrome, and Beckwith-Wiedemann syndrome. Some conditions may present with specific pathological, clinical and/or family history features, but for others, the genitourinary tumor may be the only presenting sign at the time of diagnosis. Genetic evaluation with counseling and/or testing may help identify an underlying tumor predisposition. This manuscript serves as an introduction to germline considerations for children with genitourinary rhabdomyosarcoma.
Collapse
Affiliation(s)
- Kami Wolfe Schneider
- Department of Pediatrics, Division of Hematology, Oncology and Bone Marrow Transplantation, University of Colorado, Anschutz Medical Campus, Children's Hospital Colorado, Aurora, CO, USA
| | - Nicholas G. Cost
- Department of Surgery, Division of Urology, University of Colorado, Anschutz Medical Campus, Children's Hospital Colorado, Aurora, CO, USA
| | - Kris Ann P. Schultz
- International Pleuropulmonary Blastoma (PPB)/DICER1 Registry, Cancer and Blood Disorders Program, Children's Minnesota, Minneapolis, MN, USA
| | - Shayna Svihovec
- Department of Pediatrics, Division of Genetics, University of Colorado, Anschutz Medical Campus, Children's Hospital Colorado, Aurora, CO, USA
| | - Alexandra Suttman
- Department of Pediatrics, Division of Hematology, Oncology and Bone Marrow Transplantation, University of Colorado, Anschutz Medical Campus, Children's Hospital Colorado, Aurora, CO, USA
| |
Collapse
|
7
|
Cancer incidence and spectrum among children with genetically confirmed Beckwith-Wiedemann spectrum in Germany: a retrospective cohort study. Br J Cancer 2020; 123:619-623. [PMID: 32451468 PMCID: PMC7434760 DOI: 10.1038/s41416-020-0911-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/22/2020] [Accepted: 05/06/2020] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Beckwith-Wiedemann syndrome (BWS) is a cancer predisposition syndrome caused by defects on chromosome 11p15.5. The quantitative cancer risks in BWS patients depend on the underlying (epi)genotype but have not yet been assessed in a population-based manner. METHODS We identified a group of 321 individuals with a molecularly confirmed diagnosis of BWS and analysed the cancer incidence up to age 15 years and cancer spectrum by matching their data with the German Childhood Cancer Registry. RESULTS We observed 13 cases of cancer in the entire BWS cohort vs 0.4 expected. This corresponds to a 33-fold increased risk (standardised incidence ratio (SIR) = 32.6; 95% confidence interval = 17.3-55.7). The specific cancers included hepatoblastoma (n = 6); nephroblastoma (n = 4); astrocytoma (n = 1); neuroblastoma (n = 1) and adrenocortical carcinoma (n = 1). The cancer SIR was highest in patients with a paternal uniparental disomy of 11p15.5 (UPDpat). A high cancer risk remained when cases of cancer diagnosed prior to the BWS diagnosis were excluded. CONCLUSIONS This study confirms an increased cancer risk in children with BWS. Our findings suggest that the highest cancer risk is associated with UPDpat. We were unable to confirm an excessive cancer risk in patients with IC1 gain of methylation (IC1-GOM) and this finding requires further investigation.
Collapse
|
8
|
Zhang C, Du S, Cao L. Retracted Article: Long non-coding RNA KCNQ1OT1 promotes osteosarcoma progression by increasing β-catenin activity. RSC Adv 2018; 8:37581-37589. [PMID: 35558611 PMCID: PMC9089326 DOI: 10.1039/c8ra07209d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/07/2018] [Indexed: 12/30/2022] Open
Abstract
Objective: Long non-coding RNA KCNQ1OT1 has been associated with the development of different types of cancers. The present research investigated the role of KCNQ1OT1 in osteosarcoma. Methods: Expression level of KCNQ1OT1 in osteosarcoma and paired non-cancerous tissue specimens from 56 osteosarcoma patients and its association with patients' clinicopathological features was investigated. KCNQ1OT1 overexpression and knockdown in primary-cultured osteosarcoma cells was constructed by lentiviral transduction. Influence of KCNQ1OT1 overexpression or knockdown on osteosarcoma cell growth, apoptosis, migration, invasion, epithelial-to-mesenchymal transition and beta-catenin activation was investigated. Results: Expression of KCNQ1OT1 in osteosarcoma tissue specimens was significantly increased in comparison to that in adjacent counterparts. High expression of KCNQ1OT1 significantly associated with osteosarcoma progression and patients' decreased survival. Overexpression of KCNQ1OT1 significantly increased osteosarcoma cell growth, proliferation, migration, invasion, epithelial-to-mesenchymal transition and beta-catenin activation while reducing cell apoptosis in vitro, and KCNQ1OT1 knockdown showed opposite effects. Inhibition of beta-catenin/TCF activity by ICG-001 treatment significantly attenuated the promoting effect of KCNQ1OT1 overexpression on osteosarcoma cell malignancy described above. Conclusion: KCNQ1OT1 might be a potential prognostic factor in osteosarcoma. High expression of KCNQ1OT1 might promote osteosarcoma development by increasing the activation of WNT/beta-catenin signaling pathway.
Collapse
Affiliation(s)
- Changsheng Zhang
- Department of Minimally Invasive Spine Surgery, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital) No. 100 Yongping road Zhengzhou 450000 Henan China +86-0371-85965160
| | - Shengyang Du
- Department of Orthopaedics, The First People's Hospital of Xuzhou Quanshan 221000 Xuzhou Jiangsu China
| | - Lei Cao
- Department of Orthopaedics, The First People's Hospital of Xuzhou Quanshan 221000 Xuzhou Jiangsu China
| |
Collapse
|