1
|
Zhang X, Huo C, Liu Y, Su R, Zhao Y, Li Y. Mechanism and Disease Association With a Ubiquitin Conjugating E2 Enzyme: UBE2L3. Front Immunol 2022; 13:793610. [PMID: 35265070 PMCID: PMC8899012 DOI: 10.3389/fimmu.2022.793610] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Ubiquitin conjugating enzyme E2 is an important component of the post-translational protein ubiquitination pathway, which mediates the transfer of activated ubiquitin to substrate proteins. UBE2L3, also called UBcH7, is one of many E2 ubiquitin conjugating enzymes that participate in the ubiquitination of many substrate proteins and regulate many signaling pathways, such as the NF-κB, GSK3β/p65, and DSB repair pathways. Studies on UBE2L3 have found that it has an abnormal expression in many diseases, mainly immune diseases, tumors and Parkinson's disease. It can also promote the occurrence and development of these diseases. Resultantly, UBE2L3 may become an important target for some diseases. Herein, we review the structure of UBE2L3, and its mechanism in diseases, as well as diseases related to UBE2L3 and discuss the related challenges.
Collapse
Affiliation(s)
- Xiaoxia Zhang
- Department of Ophthalmology, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Chengdong Huo
- Department of Ophthalmology, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yating Liu
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Ruiliang Su
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yang Zhao
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yumin Li
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
2
|
Dove KK, Stieglitz B, Duncan ED, Rittinger K, Klevit RE. Molecular insights into RBR E3 ligase ubiquitin transfer mechanisms. EMBO Rep 2016; 17:1221-35. [PMID: 27312108 PMCID: PMC4967960 DOI: 10.15252/embr.201642641] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 05/24/2016] [Indexed: 12/30/2022] Open
Abstract
RING-in-between-RING (RBR) ubiquitin (Ub) ligases are a distinct class of E3s, defined by a RING1 domain that binds E2 Ub-conjugating enzyme and a RING2 domain that contains an active site cysteine similar to HECT-type E3s. Proposed to function as RING/HECT hybrids, details regarding the Ub transfer mechanism used by RBRs have yet to be defined. When paired with RING-type E3s, E2s perform the final step of Ub ligation to a substrate. In contrast, when paired with RBR E3s, E2s must transfer Ub onto the E3 to generate a E3~Ub intermediate. We show that RBRs utilize two strategies to ensure transfer of Ub from the E2 onto the E3 active site. First, RING1 domains of HHARI and RNF144 promote open E2~Ubs. Second, we identify a Ub-binding site on HHARI RING2 important for its recruitment to RING1-bound E2~Ub. Mutations that ablate Ub binding to HHARI RING2 also decrease RBR ligase activity, consistent with RING2 recruitment being a critical step for the RBR Ub transfer mechanism. Finally, we demonstrate that the mechanism defined here is utilized by a variety of RBRs.
Collapse
Affiliation(s)
- Katja K Dove
- Department of BiochemistryUniversity of WashingtonSeattleWAUSA
| | - Benjamin Stieglitz
- Mill Hill LaboratoryThe Francis Crick InstituteLondonUK,Present address: Department of Chemistry and BiochemistrySchool of Biological and Chemical SciencesQueen Mary University of LondonLondonUK
| | - Emily D Duncan
- Department of BiochemistryUniversity of WashingtonSeattleWAUSA
| | | | - Rachel E Klevit
- Department of BiochemistryUniversity of WashingtonSeattleWAUSA
| |
Collapse
|
3
|
Sauvé V, Lilov A, Seirafi M, Vranas M, Rasool S, Kozlov G, Sprules T, Wang J, Trempe JF, Gehring K. A Ubl/ubiquitin switch in the activation of Parkin. EMBO J 2015; 34:2492-505. [PMID: 26254305 PMCID: PMC4609182 DOI: 10.15252/embj.201592237] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 07/24/2015] [Indexed: 11/23/2022] Open
Abstract
Mutations in Parkin and PINK1 cause an inherited early-onset form of Parkinson's disease. The two proteins function together in a mitochondrial quality control pathway whereby PINK1 accumulates on damaged mitochondria and activates Parkin to induce mitophagy. How PINK1 kinase activity releases the auto-inhibited ubiquitin ligase activity of Parkin remains unclear. Here, we identify a binding switch between phospho-ubiquitin (pUb) and the ubiquitin-like domain (Ubl) of Parkin as a key element. By mutagenesis and SAXS, we show that pUb binds to RING1 of Parkin at a site formed by His302 and Arg305. pUb binding promotes disengagement of the Ubl from RING1 and subsequent Parkin phosphorylation. A crystal structure of Parkin Δ86–130 at 2.54 Å resolution allowed the design of mutations that specifically release the Ubl domain from RING1. These mutations mimic pUb binding and promote Parkin phosphorylation. Measurements of the E2 ubiquitin-conjugating enzyme UbcH7 binding to Parkin and Parkin E3 ligase activity suggest that Parkin phosphorylation regulates E3 ligase activity downstream of pUb binding.
Collapse
Affiliation(s)
- Véronique Sauvé
- Groupe de recherché axé sur la structure des protéines and Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Asparouh Lilov
- Groupe de recherché axé sur la structure des protéines and Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Marjan Seirafi
- Groupe de recherché axé sur la structure des protéines and Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Marta Vranas
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | - Shafqat Rasool
- Groupe de recherché axé sur la structure des protéines and Department of Biochemistry, McGill University, Montréal, QC, Canada Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | - Guennadi Kozlov
- Groupe de recherché axé sur la structure des protéines and Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Tara Sprules
- Quebec/Eastern Canada High Field NMR Facility (QANUC), Montréal, QC, Canada
| | - Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Jean-François Trempe
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | - Kalle Gehring
- Groupe de recherché axé sur la structure des protéines and Department of Biochemistry, McGill University, Montréal, QC, Canada
| |
Collapse
|
4
|
Grishin AM, Condos TEC, Barber KR, Campbell-Valois FX, Parsot C, Shaw GS, Cygler M. Structural basis for the inhibition of host protein ubiquitination by Shigella effector kinase OspG. Structure 2014; 22:878-88. [PMID: 24856362 DOI: 10.1016/j.str.2014.04.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 03/19/2014] [Accepted: 04/09/2014] [Indexed: 11/30/2022]
Abstract
Shigella invasion of its human host is assisted by T3SS-delivered effector proteins. The OspG effector kinase binds ubiquitin and ubiquitin-loaded E2-conjugating enzymes, including UbcH5b and UbcH7, and attenuates the host innate immune NF-kB signaling. We present the structure of OspG bound to the UbcH7∼Ub conjugate. OspG has a minimal kinase fold lacking the activation loop of regulatory kinases. UbcH7∼Ub binds OspG at sites remote from the kinase active site, yet increases its kinase activity. The ubiquitin is positioned in the "open" conformation with respect to UbcH7 using its I44 patch to interact with the C terminus of OspG. UbcH7 binds to OspG using two conserved loops essential for E3 ligase recruitment. The interaction of the UbcH7∼Ub with OspG is remarkably similar to the interaction of an E2∼Ub with a HECT E3 ligase. OspG interferes with the interaction of UbcH7 with the E3 parkin and inhibits the activity of the E3.
Collapse
Affiliation(s)
- Andrey M Grishin
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Tara E C Condos
- Department of Biochemistry, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Kathryn R Barber
- Department of Biochemistry, University of Western Ontario, London, ON N6A 5C1, Canada
| | | | - Claude Parsot
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, 75724 Paris, France; INSERM, U786, 75015, Paris, France
| | - Gary S Shaw
- Department of Biochemistry, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Miroslaw Cygler
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada; Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada.
| |
Collapse
|
5
|
Trempe JF, Sauvé V, Grenier K, Seirafi M, Tang MY, Ménade M, Al-Abdul-Wahid S, Krett J, Wong K, Kozlov G, Nagar B, Fon EA, Gehring K. Structure of parkin reveals mechanisms for ubiquitin ligase activation. Science 2013; 340:1451-5. [PMID: 23661642 DOI: 10.1126/science.1237908] [Citation(s) in RCA: 416] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mutations in the PARK2 (parkin) gene are responsible for an autosomal recessive form of Parkinson's disease. The parkin protein is a RING-in-between-RING E3 ubiquitin ligase that exhibits low basal activity. We describe the crystal structure of full-length rat parkin. The structure shows parkin in an autoinhibited state and provides insight into how it is activated. RING0 occludes the ubiquitin acceptor site Cys(431) in RING2, whereas a repressor element of parkin binds RING1 and blocks its E2-binding site. Mutations that disrupted these inhibitory interactions activated parkin both in vitro and in cells. Parkin is neuroprotective, and these findings may provide a structural and mechanistic framework for enhancing parkin activity.
Collapse
Affiliation(s)
- Jean-François Trempe
- McGill Parkinson Program, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, Québec, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Architecture of the catalytic HPN motif is conserved in all E2 conjugating enzymes. Biochem J 2012; 445:167-74. [PMID: 22563859 DOI: 10.1042/bj20120504] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
E2 conjugating enzymes are the central enzymes in the ubiquitination pathway and are responsible for the transfer of ubiquitin and ubiquitin-like proteins on to target substrates. The secondary structural elements of the catalytic domain of these enzymes is highly conserved, including the sequence conservation of a three-residue HPN (His-Pro-Asn) motif located upstream of the active-site cysteine residue used for ubiquitin conjugation. Despite the vast structural knowledge of E2 enzymes, the catalytic mechanism of these enzymes remains poorly understood, in large part due to variation in the arrangements of the residues in the HPN motif in existing E2 structures. In the present study, we used the E2 enzyme HIP2 to probe the structures of the HPN motif in several other E2 enzymes. A combination of chemical-shift analysis, determination of the histidine protonation states and amide temperature coefficients were used to determine the orientation of the histidine ring and hydrogen-bonding arrangements within the HPN motif. Unlike many three-dimensional structures, we found that a conserved hydrogen bond between the histidine imidazole ring and the asparagine backbone amide proton, a common histidine protonation state, and a common histidine orientation exists for all E2 enzymes examined. These results indicate that the histidine within the HPN motif is orientated to structurally stabilize a tight turn motif in all E2 enzymes and is not orientated to interact with the asparagine side chain as proposed in some mechanisms. These results suggest that a common catalysis mechanism probably exists for all E2 conjugating enzymes to facilitate ubiquitin transfer.
Collapse
|