1
|
Milton ME, Cavanagh J. The Biofilm Regulatory Network from Bacillus subtilis: A Structure-Function Analysis. J Mol Biol 2023; 435:167923. [PMID: 36535428 DOI: 10.1016/j.jmb.2022.167923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/02/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Bacterial biofilms are notorious for their ability to protect bacteria from environmental challenges, most importantly the action of antibiotics. Bacillus subtilis is an extensively studied model organism used to understand the process of biofilm formation. A complex network of principal regulatory proteins including Spo0A, AbrB, AbbA, Abh, SinR, SinI, SlrR, and RemA, work in concert to transition B. subtilis from the free-swimming planktonic state to the biofilm state. In this review, we explore, connect, and summarize decades worth of structural and biochemical studies that have elucidated this protein signaling network. Since structure dictates function, unraveling aspects of protein molecular mechanisms will allow us to devise ways to exploit critical features of the biofilm regulatory pathway, such as possible therapeutic intervention. This review pools our current knowledge base of B. subtilis biofilm regulatory proteins and highlights potential therapeutic intervention points.
Collapse
Affiliation(s)
- Morgan E Milton
- Department of Biochemistry and Molecular Biology, The Brody School of Medicine, East Carolina University, NC 27834, USA.
| | - John Cavanagh
- Department of Biochemistry and Molecular Biology, The Brody School of Medicine, East Carolina University, NC 27834, USA.
| |
Collapse
|
2
|
Yang Y, Nie X, Jiang Y, Yang C, Gu Y, Jiang W. Metabolic regulation in solventogenic clostridia: regulators, mechanisms and engineering. Biotechnol Adv 2018; 36:905-914. [DOI: 10.1016/j.biotechadv.2018.02.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/05/2018] [Accepted: 02/20/2018] [Indexed: 12/31/2022]
|
3
|
Xue Q, Yang Y, Chen J, Chen L, Yang S, Jiang W, Gu Y. Roles of three AbrBs in regulating two-phase Clostridium acetobutylicum fermentation. Appl Microbiol Biotechnol 2016; 100:9081-9089. [PMID: 27276910 DOI: 10.1007/s00253-016-7638-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 05/14/2016] [Indexed: 12/11/2022]
Abstract
Clostridium acetobutylicum is an important industrial microorganism for n-butanol bioproduction, and its transcription factor AbrB0310 regulates various important cellular processes. However, the roles of two abrB homologues, abrB1941 and abrB3647, have not been determined because they appear inactive during transcription. Here, we performed a detailed investigation into the function of abrB1941 and abrB3647 in C. acetobutylicum. Interestingly, we observed that AbrB3647 exerts an important influence on biphasic fermentation that opposes the influence of AbrB0310, while AbrB1941 might not be essential. When abrB3647 was disrupted using the Targetron system, a greatly improved cellular growth occurred. The following analysis shows that all three AbrBs participated in metabolically regulating acidogenesis, solventogenesis, and a two-phase transition in C. acetobutylicum, but the AbrB0310 and AbrB3647 functions were the most important. Moreover, the target genes subject to AbrB0310 and AbrB3647 regulation closely overlap. Based on these results, we will better understand the roles of the three AbrBs in regulating solventogenic clostridia cell physiology.
Collapse
Affiliation(s)
- Qiong Xue
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yunpeng Yang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Chen
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Sheng Yang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China.,Jiangsu National Synergetic Innovation Center for Advanced Materials, SICAM, 200 North Zhongshan Road, Nanjing, 210009, China
| | - Weihong Jiang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China. .,Jiangsu National Synergetic Innovation Center for Advanced Materials, SICAM, 200 North Zhongshan Road, Nanjing, 210009, China.
| | - Yang Gu
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China. .,Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
4
|
Structure and DNA-binding traits of the transition state regulator AbrB. Structure 2014; 22:1650-6. [PMID: 25308864 DOI: 10.1016/j.str.2014.08.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 08/27/2014] [Accepted: 08/28/2014] [Indexed: 11/20/2022]
Abstract
The AbrB protein from Bacillus subtilis is a DNA-binding global regulator controlling the onset of a vast array of protective functions under stressful conditions. Such functions include biofilm formation, antibiotic production, competence development, extracellular enzyme production, motility, and sporulation. AbrB orthologs are known in a variety of prokaryotic organisms, most notably in all infectious strains of Clostridia, Listeria, and Bacilli. Despite its central role in bacterial response and defense, its structure has been elusive because of its highly dynamic character. Orienting its N- and C-terminal domains with respect to one another has been especially problematic. Here, we have generated a structure of full-length, tetrameric AbrB using nuclear magnetic resonance, chemical crosslinking, and mass spectrometry. We note that AbrB possesses a strip of positive electrostatic potential encompassing its DNA-binding region and that its C-terminal domain aids in DNA binding.
Collapse
|
5
|
Olson AL, Liu F, Tucker AT, Goshe MB, Cavanagh J. Chemical crosslinking and LC/MS analysis to determine protein domain orientation: application to AbrB. Biochem Biophys Res Commun 2013; 431:253-7. [PMID: 23313475 DOI: 10.1016/j.bbrc.2012.12.124] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 12/28/2012] [Indexed: 11/18/2022]
Abstract
To fully understand the modes of action of multi-protein complexes, it is essential to determine their overall global architecture and the specific relationships between domains and subunits. The transcription factor AbrB is a functional homotetramer consisting of two domains per monomer. Obtaining the high-resolution structure of tetrameric AbrB has been extremely challenging due to the independent character of these domains. To facilitate the structure determination process, we solved the NMR structures of both domains independently and utilized gas-phase cleavable chemical crosslinking and LC/MS(n) analysis to correctly position the domains within the full tetrameric AbrB protein structure.
Collapse
Affiliation(s)
- Andrew L Olson
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA.
| | | | | | | | | |
Collapse
|