1
|
D'Andréa ÉD, Retel JS, Diehl A, Schmieder P, Oschkinat H, Pires JR. NMR structure and dynamics of Q4DY78, a conserved kinetoplasid-specific protein from Trypanosoma cruzi. J Struct Biol 2021; 213:107715. [PMID: 33705979 DOI: 10.1016/j.jsb.2021.107715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 10/21/2022]
Abstract
The 106-residue protein Q4DY78 (UniProt accession number) from Trypanosoma cruzi is highly conserved in the related kinetoplastid pathogens Trypanosoma brucei and Leishmania major. Given the essentiality of its orthologue in T. brucei, the high sequence conservation with other trypanosomatid proteins, and the low sequence similarity with mammalian proteins, Q4DY78 is an attractive protein for structural characterization. Here, we solved the structure of Q4DY78 by solution NMR and evaluated its backbone dynamics. Q4DY78 is composed of five α -helices and a small, two-stranded antiparallel β-sheet. The backbone RMSD is 0.22 ± 0.05 Å for the representative ensemble of the 20 lowest-energy structures. Q4DY78 is overall rigid, except for N-terminal residues (V8 to I10), residues at loop 4 (K57 to G65) and residues at the C-terminus (F89 to F112). Q4DY78 has a short motif FPCAP that could potentially mediate interactions with the host cytoskeleton via interaction with EVH1 (Drosophila Enabled (Ena)/Vasodilator-stimulated phosphoprotein (VASP) homology 1) domains. Albeit Q4DY78 lacks calcium-binding motifs, its fold resembles that of eukaryotic calcium-binding proteins such as calcitracin, calmodulin, and polcacin Bet V4. We characterized this novel protein with a calcium binding fold without the capacity to bind calcium.
Collapse
Affiliation(s)
- Éverton Dias D'Andréa
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373 - Bloco E, sala 32, Rio de Janeiro, RJ 21941-902, Brazil
| | - Joren Sebastian Retel
- Leibniz-Institut für Molekulare Pharmakologie, FMP, Robert-Rössle-Straβe 10, Berlin 13125, Germany
| | - Anne Diehl
- Leibniz-Institut für Molekulare Pharmakologie, FMP, Robert-Rössle-Straβe 10, Berlin 13125, Germany
| | - Peter Schmieder
- Leibniz-Institut für Molekulare Pharmakologie, FMP, Robert-Rössle-Straβe 10, Berlin 13125, Germany
| | - Hartmut Oschkinat
- Leibniz-Institut für Molekulare Pharmakologie, FMP, Robert-Rössle-Straβe 10, Berlin 13125, Germany; Freie Universität Berlin, Institut für Chemie und Biochemie, Takustrasse 3, Berlin 14195, Germany
| | - José Ricardo Pires
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373 - Bloco E, sala 32, Rio de Janeiro, RJ 21941-902, Brazil.
| |
Collapse
|
2
|
Andrade GC, Silva LFC, Oliveira DMP, Pires JRM, Almeida FCL, Anobom CD. Backbone and side chain 1H, 15N and 13C assignments of a putative peptidyl prolyl cis-trans isomerase FKBP12 from Mycobacterium tuberculosis. BIOMOLECULAR NMR ASSIGNMENTS 2019; 13:239-243. [PMID: 30879170 DOI: 10.1007/s12104-019-09884-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 02/22/2019] [Indexed: 06/09/2023]
Abstract
FK506 Binding Proteins (FKBPs) are a family of highly conserved and important proteins that possess a peptidyl cis-trans isomerase (PPIases) domain. Human FKBP12 is a prototype of this family and it is involved in many diseases due to its interaction with the immunosuppressive drugs FK506 and rapamycin. They inhibit calcineurin and mTOR complex, respectively, leading to parasite death by inhibiting cell proliferation through cytokinesis blockade being an important target to find new drugs. Tuberculosis is a disease that causes important impacts on public health worldwide. In this context, MtFKBP12 is a putative peptidyl prolyl cis-trans isomerase from Mycobacterium tuberculosis and here we report the NMR chemical shift assignment for 1H, 15N and 13C nuclei in the backbone and side chains of the MtFKBP12. This lays the foundation for further structural studies, backbone dynamics, mapping of interactions and drug screening and development. We have found through the NMR spectrum that the protein is well folded with narrow peaks and almost none overlap in 15N-HSQC. Prediction of secondary structure using Talos-N server showed great similarity with other proteins from this family.
Collapse
Affiliation(s)
- Guilherme Caldas Andrade
- Institute of Chemistry, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373 CCS/Anexo CNRMN, Rio de Janeiro, RJ, 21941-920, Brazil
| | - Luis Felipe Correa Silva
- Institute of Chemistry, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373 CCS/Anexo CNRMN, Rio de Janeiro, RJ, 21941-920, Brazil
| | - Danielle Maria Perpétua Oliveira
- Institute of Chemistry, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373 CCS/Anexo CNRMN, Rio de Janeiro, RJ, 21941-920, Brazil
| | - José Ricardo M Pires
- Institute of Medical Biochemistry (IBqM), National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373 CCS/Anexo CNRMN, Rio de Janeiro, RJ, 21941-920, Brazil
- National Center of Nuclear Magnetic Resonance (CNRMN), Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio C L Almeida
- Institute of Medical Biochemistry (IBqM), National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373 CCS/Anexo CNRMN, Rio de Janeiro, RJ, 21941-920, Brazil.
- National Center of Nuclear Magnetic Resonance (CNRMN), Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Cristiane Dinis Anobom
- Institute of Chemistry, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373 CCS/Anexo CNRMN, Rio de Janeiro, RJ, 21941-920, Brazil.
| |
Collapse
|