1
|
Li S, Wang Y, Yang Y, Yu X, Liu J, Jiang M, Zhang J, Yun G, Han Y, Wang H, Xie Q, Chen G. Impact of Human Body Temperature on Stress Tolerance and Transcriptome of Cronobacter sakazakii. Pathogens 2025; 14:281. [PMID: 40137766 PMCID: PMC11946066 DOI: 10.3390/pathogens14030281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/13/2025] [Accepted: 02/20/2025] [Indexed: 03/29/2025] Open
Abstract
Cronobacter sakazakii is a food-borne pathogen that can thrive in various environments, including the human body. The human body's physiological temperature exceeds that of the environment (22-30 °C), necessitating adaptations to heat stress during this transition. Managing heat stress is crucial when transitioning from the environment to the human body. In this study, we explored the effect of human body temperature on the growth of planktonic C. sakazakii, as well as its acid resistance, osmotic stress resistance, autoaggregation, and cell surface hydrophobicity. Our study demonstrated that human body temperature facilitated the growth, acid resistance, and osmotic resistance of C. sakazakii, compared to 28 °C. The relationship between human body temperature and phenotypes was studied by comparing gene expression at human and environmental temperatures (37 to 28 °C) using high-throughput sequencing. The results revealed up-regulation in the expression of 626 genes, including genes involved in arginine and proline metabolism, carbon fixation pathways, and nitrogen metabolism. Further analysis showed that human body temperature is essential for the environmental stress resistance of C. sakazakii. It boosts denitrification, betaine transport, and universal stress proteins, supporting membrane integrity and osmoprotectant transport. This study enhances our understanding of the strategies employed by C. sakazakii during its adaptation to the human body.
Collapse
Affiliation(s)
- Siqi Li
- School of Medicine, Northwest University, Xi’an 710069, China; (S.L.); (Y.Y.); (X.Y.); (J.L.); (M.J.); (J.Z.); (G.Y.); (Y.H.)
| | - Yuanyuan Wang
- College of Medical Technology, Shaanxi University of Chinese Medicine, Xianyang 712046, China;
| | - Yahao Yang
- School of Medicine, Northwest University, Xi’an 710069, China; (S.L.); (Y.Y.); (X.Y.); (J.L.); (M.J.); (J.Z.); (G.Y.); (Y.H.)
| | - Xinlu Yu
- School of Medicine, Northwest University, Xi’an 710069, China; (S.L.); (Y.Y.); (X.Y.); (J.L.); (M.J.); (J.Z.); (G.Y.); (Y.H.)
| | - Jiajia Liu
- School of Medicine, Northwest University, Xi’an 710069, China; (S.L.); (Y.Y.); (X.Y.); (J.L.); (M.J.); (J.Z.); (G.Y.); (Y.H.)
| | - Meiling Jiang
- School of Medicine, Northwest University, Xi’an 710069, China; (S.L.); (Y.Y.); (X.Y.); (J.L.); (M.J.); (J.Z.); (G.Y.); (Y.H.)
| | - Jing Zhang
- School of Medicine, Northwest University, Xi’an 710069, China; (S.L.); (Y.Y.); (X.Y.); (J.L.); (M.J.); (J.Z.); (G.Y.); (Y.H.)
| | - Ge Yun
- School of Medicine, Northwest University, Xi’an 710069, China; (S.L.); (Y.Y.); (X.Y.); (J.L.); (M.J.); (J.Z.); (G.Y.); (Y.H.)
| | - Yufei Han
- School of Medicine, Northwest University, Xi’an 710069, China; (S.L.); (Y.Y.); (X.Y.); (J.L.); (M.J.); (J.Z.); (G.Y.); (Y.H.)
| | - Heng Wang
- China Astronaut Research and Training Center, Beijing 100086, China;
| | - Qiong Xie
- China Astronaut Research and Training Center, Beijing 100086, China;
| | - Gukui Chen
- School of Medicine, Northwest University, Xi’an 710069, China; (S.L.); (Y.Y.); (X.Y.); (J.L.); (M.J.); (J.Z.); (G.Y.); (Y.H.)
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China
- ShaanXi Provincial Key Laboratory of Biotechnology, Xi’an 710069, China
| |
Collapse
|
2
|
Wang Y, Liao R, Pan H, Wang X, Wan X, Han B, Song C. Comparative metabolic profiling of the mycelium and fermentation broth of Penicillium restrictum from Peucedanum praeruptorum rhizosphere. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13286. [PMID: 38844388 PMCID: PMC11156492 DOI: 10.1111/1758-2229.13286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/30/2024] [Indexed: 06/10/2024]
Abstract
Microorganisms in the rhizosphere, particularly arbuscular mycorrhiza, have a broad symbiotic relationship with their host plants. One of the major fungi isolated from the rhizosphere of Peucedanum praeruptorum is Penicillium restrictum. The relationship between the metabolites of P. restrictum and the root exudates of P. praeruptorum is being investigated. The accumulation of metabolites in the mycelium and fermentation broth of P. restrictum was analysed over different fermentation periods. Non-targeted metabolomics was used to compare the differences in intracellular and extracellular metabolites over six periods. There were significant differences in the content and types of mycelial metabolites during the incubation. Marmesin, an important intermediate in the biosynthesis of coumarins, was found in the highest amount on the fourth day of incubation. The differential metabolites were screened to obtain 799 intracellular and 468 extracellular differential metabolites. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that the highly enriched extracellular metabolic pathways were alanine, aspartate and glutamate metabolism, glyoxylate and dicarboxylate metabolism, and terpenoid backbone biosynthesis. In addition, the enrichment analysis associated with intracellular and extracellular ATP-binding cassette transporter proteins revealed that some ATP-binding cassette transporters may be involved in the transportation of certain amino acids and carbohydrates. Our results provide some theoretical basis for the regulatory mechanisms between the rhizosphere and the host plant and pave the way for the heterologous production of furanocoumarin.
Collapse
Affiliation(s)
- Yuanyuan Wang
- School of PharmacyAnhui University of Chinese MedicineHefeiChina
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco‐agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical EngineeringWest Anhui UniversityLuanChina
| | - Ranran Liao
- School of PharmacyAnhui University of Chinese MedicineHefeiChina
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco‐agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical EngineeringWest Anhui UniversityLuanChina
| | - Haoyu Pan
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco‐agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical EngineeringWest Anhui UniversityLuanChina
- School of Life ScienceAnhui Agricultural UniversityHefeiChina
| | - Xuejun Wang
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco‐agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical EngineeringWest Anhui UniversityLuanChina
| | - Xiaoting Wan
- School of PharmacyAnhui University of Chinese MedicineHefeiChina
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco‐agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical EngineeringWest Anhui UniversityLuanChina
| | - Bangxing Han
- School of PharmacyAnhui University of Chinese MedicineHefeiChina
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco‐agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical EngineeringWest Anhui UniversityLuanChina
| | - Cheng Song
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco‐agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical EngineeringWest Anhui UniversityLuanChina
| |
Collapse
|
3
|
Xia X, Liu J, Huang L, Zhang X, Deng Y, Li F, Liu Z, Huang R. Molecular Details of Actinomycin D-Treated MRSA Revealed via High-Dimensional Data. Mar Drugs 2022; 20:md20020114. [PMID: 35200643 PMCID: PMC8878686 DOI: 10.3390/md20020114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/18/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is highly concerning as a principal infection pathogen. The investigation of higher effective natural anti-MRSA agents from marine Streptomyces parvulus has led to the isolation of actinomycin D, that showed potential anti-MRSA activity with MIC and MBC values of 1 and 8 μg/mL, respectively. Proteomics-metabolomics analysis further demonstrated a total of 261 differential proteins and 144 differential metabolites induced by actinomycin D in MRSA, and the co-mapped correlation network of omics, indicated that actinomycin D induced the metabolism pathway of producing the antibiotic sensitivity in MRSA. Furthermore, the mRNA expression levels of the genes acnA, ebpS, clfA, icd, and gpmA related to the key differential proteins were down-regulated measured by qRT-PCR. Molecular docking predicted that actinomycin D was bound to the targets of the two key differential proteins AcnA and Icd by hydrogen bonds and interacted with multiple amino acid residues of the proteins. Thus, these findings will provide a basic understanding to further investigation of actinomycin D as a potential anti-MRSA agent.
Collapse
Affiliation(s)
- Xuewei Xia
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (X.X.); (L.H.); (Y.D.); (F.L.); (Z.L.)
| | - Jun Liu
- Laboratory of Pathogenic Biology, Guangdong Medical University, Zhanjiang 524023, China;
| | - Li Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (X.X.); (L.H.); (Y.D.); (F.L.); (Z.L.)
| | - Xiaoyong Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China;
| | - Yunqin Deng
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (X.X.); (L.H.); (Y.D.); (F.L.); (Z.L.)
| | - Fengming Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (X.X.); (L.H.); (Y.D.); (F.L.); (Z.L.)
| | - Zhiyuan Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (X.X.); (L.H.); (Y.D.); (F.L.); (Z.L.)
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (X.X.); (L.H.); (Y.D.); (F.L.); (Z.L.)
- Correspondence:
| |
Collapse
|
4
|
Zhang H, Li Y, Nie J, Ren J, Zeng AP. Structure-based dynamic analysis of the glycine cleavage system suggests key residues for control of a key reaction step. Commun Biol 2020; 3:756. [PMID: 33311647 PMCID: PMC7733448 DOI: 10.1038/s42003-020-01401-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 10/19/2020] [Indexed: 12/16/2022] Open
Abstract
Molecular shuttles play decisive roles in many multi-enzyme systems such as the glycine cleavage system (GCS) for one-carbon (C1) metabolism. In GCS, a lipoate swinging arm containing an aminomethyl moiety is attached to protein H and serves as a molecular shuttle among different proteins. Protection of the aminomethyl moiety in a cavity of protein H and its release induced by protein T are key processes but barely understood. Here, we present a detailed structure-based dynamic analysis of the induced release of the lipoate arm of protein H. Based on molecular dynamics simulations of interactions between proteins H and T, four major steps of the release process showing significantly different energy barriers and time scales can be distinguished. Mutations of a key residue, Ser-67 in protein H, led to a bidirectional tuning of the release process. This work opens ways to target C1 metabolism in biomedicine and the utilization of formate and CO2 for biosynthesis.
Collapse
Affiliation(s)
- Han Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, 100029, Beijing, China
| | - Yuchen Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, 100029, Beijing, China
| | - Jinglei Nie
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, 100029, Beijing, China
| | - Jie Ren
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, 100029, Beijing, China. .,State Key Laboratory for Biology of Plant Diseases and Insect Pests/Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri-product Quality and Safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
| | - An-Ping Zeng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, 100029, Beijing, China. .,Hamburg University of Technology, Institute of Bioprocess and Biosystems Engineering, Denickestrasse 15, D-21073, Hamburg, Germany.
| |
Collapse
|
5
|
Zhou A, Cao Y, Zhou D, Hu S, Tan W, Xiao X, Yu Y, Li X. Global transcriptomic analysis of Cronobacter sakazakii CICC 21544 by RNA-seq under inorganic acid and organic acid stresses. Food Res Int 2019; 130:108963. [PMID: 32156398 DOI: 10.1016/j.foodres.2019.108963] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/23/2019] [Accepted: 12/25/2019] [Indexed: 01/07/2023]
Abstract
Cronobacter sakazakii is a common foodborne pathogen that can tolerate various stress conditions. Acidic environment is a common stress condition encountered by bacteria in food processing and gastrointestinal digestion, including both inorganic and organic acids. In order to elucidate the Acid Tolerance Response (ATR) of C. sakazakii, we performed high-throughput RNA-seq to compare gene expression under hydrochloric acid and citric acid stresses. In this study, 107 differentially expressed genes (DEGs) were identified in both acids, of which 85 DEGs were functionally related to the regulation of acid tolerance. Multiple layers of mechanisms may be applied by C. sakazakii in response to acid stress: Firstly, in order to reduce excessive intracellular protons, C. sakazakii pumps them out through trans-membrane proteins or consumes them through metabolic reactions. Secondly, under acidic conditions, a large amount of reactive oxygen species and hydroxyl radicals accumulate in the cells, resulting in oxidative damage. C. sakazakii protects cells by up-regulating the antioxidant stress genes such as soxS and madB. Thirdly, C. sakazakii chooses energy efficient metabolic pathways to reduce energy consumption and maintain necessary processes. Finally, genes involved in chemotaxis and motility were differentially expressed to respond to different acidic conditions. This study systematically analyzed the acid-resistant mechanism of C. sakazakii under the stress of organic and inorganic acids, and provided a theoretical basis for better control of its contamination in food.
Collapse
Affiliation(s)
- Ailian Zhou
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou City, Guangdong Province 510640, China
| | - Yifang Cao
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou City, Guangdong Province 510640, China
| | - Donggen Zhou
- Ningbo International Travel Healthcare Center. No. 336 Liuting Street, Haishu District, Ningbo City, Zhejiang Province 315012, China
| | - Shuangfang Hu
- Key Laboratory of Molecular Epidemiology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen City, Guangdong Province 518055, China
| | - Wanjing Tan
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou City, Guangdong Province 510640, China
| | - Xinglong Xiao
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou City, Guangdong Province 510640, China.
| | - Yigang Yu
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou City, Guangdong Province 510640, China
| | - Xiaofeng Li
- State Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Food Sciences, South China University of Technology, 381 Wusan Road, Tianhe District, Guangzhou City 510640, Guangdong Province, China.
| |
Collapse
|