1
|
Bartels P, Salveson I, Coleman AM, Anderson DE, Jeng G, Estrada-Tobar ZM, Man KNM, Yu Q, Kuzmenkina E, Nieves-Cintron M, Navedo MF, Horne MC, Hell JW, Ames JB. Half-calcified calmodulin promotes basal activity and inactivation of the L-type calcium channel Ca V1.2. J Biol Chem 2022; 298:102701. [PMID: 36395884 PMCID: PMC9764201 DOI: 10.1016/j.jbc.2022.102701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022] Open
Abstract
The L-type Ca2+ channel CaV1.2 controls gene expression, cardiac contraction, and neuronal activity. Calmodulin (CaM) governs CaV1.2 open probability (Po) and Ca2+-dependent inactivation (CDI) but the mechanisms remain unclear. Here, we present electrophysiological data that identify a half Ca2+-saturated CaM species (Ca2/CaM) with Ca2+ bound solely at the third and fourth EF-hands (EF3 and EF4) under resting Ca2+ concentrations (50-100 nM) that constitutively preassociates with CaV1.2 to promote Po and CDI. We also present an NMR structure of a complex between the CaV1.2 IQ motif (residues 1644-1665) and Ca2/CaM12', a calmodulin mutant in which Ca2+ binding to EF1 and EF2 is completely disabled. We found that the CaM12' N-lobe does not interact with the IQ motif. The CaM12' C-lobe bound two Ca2+ ions and formed close contacts with IQ residues I1654 and Y1657. I1654A and Y1657D mutations impaired CaM binding, CDI, and Po, as did disabling Ca2+ binding to EF3 and EF4 in the CaM34 mutant when compared to WT CaM. Accordingly, a previously unappreciated Ca2/CaM species promotes CaV1.2 Po and CDI, identifying Ca2/CaM as an important mediator of Ca signaling.
Collapse
Affiliation(s)
- Peter Bartels
- Department of Pharmacology, University of California, Davis, California, USA
| | - Ian Salveson
- Department of Chemistry, University of California, Davis, California, USA
| | - Andrea M Coleman
- Department of Pharmacology, University of California, Davis, California, USA; Department of Chemistry, University of California, Davis, California, USA
| | - David E Anderson
- Department of Chemistry, University of California, Davis, California, USA
| | - Grace Jeng
- Department of Pharmacology, University of California, Davis, California, USA
| | | | - Kwun Nok Mimi Man
- Department of Pharmacology, University of California, Davis, California, USA
| | - Qinhong Yu
- Department of Chemistry, University of California, Davis, California, USA
| | - Elza Kuzmenkina
- Center for Pharmacology, University of Cologne, Cologne, Germany
| | | | - Manuel F Navedo
- Department of Pharmacology, University of California, Davis, California, USA
| | - Mary C Horne
- Department of Pharmacology, University of California, Davis, California, USA.
| | - Johannes W Hell
- Department of Pharmacology, University of California, Davis, California, USA.
| | - James B Ames
- Department of Chemistry, University of California, Davis, California, USA.
| |
Collapse
|
2
|
Peshenko IV, Yu Q, Lim S, Cudia D, Dizhoor AM, Ames JB. Retinal degeneration 3 (RD3) protein, a retinal guanylyl cyclase regulator, forms a monomeric and elongated four-helix bundle. J Biol Chem 2019; 294:2318-2328. [PMID: 30559291 PMCID: PMC6378972 DOI: 10.1074/jbc.ra118.006106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/07/2018] [Indexed: 12/20/2022] Open
Abstract
Retinal degeneration 3 (RD3) protein promotes accumulation of retinal membrane guanylyl cyclase (RetGC) in the photoreceptor outer segment and suppresses RetGC activation by guanylyl cyclase-activating proteins (GCAPs). Mutations truncating RD3 cause severe congenital blindness by preventing the inhibitory binding of RD3 to the cyclase. The high propensity of RD3 to aggregate in solution has prevented structural analysis. Here, we produced a highly soluble variant of human RD3 (residues 18-160) that is monomeric and can still bind and negatively regulate RetGC. The NMR solution structure of RD3 revealed an elongated backbone structure (70 Å long and 30 Å wide) consisting of a four-helix bundle with a long unstructured loop between helices 1 and 2. The structure reveals that RD3 residues previously implicated in the RetGC binding map to a localized and contiguous area on the structure, involving a loop between helices 2 and 3 and adjacent parts of helices 3 and 4. The NMR structure of RD3 was validated by mutagenesis. Introducing Trp85 or Phe29 to replace Cys or Leu, respectively, disrupts packing in the hydrophobic core and lowers RD3's apparent affinity for RetGC1. Introducing a positive charge at the interface (Glu32 to Lys) also lowered the affinity. Conversely, introducing Val in place of Cys93 stabilized the hydrophobic core and increased the RD3 affinity for the cyclase. The NMR structure of RD3 presented here provides a structural basis for elucidating RD3-RetGC interactions relevant for normal vision or blindness.
Collapse
Affiliation(s)
- Igor V Peshenko
- From the Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania 19027 and
| | - Qinhong Yu
- the Department of Chemistry, University of California, Davis, California 95616
| | - Sunghyuk Lim
- the Department of Chemistry, University of California, Davis, California 95616
| | - Diana Cudia
- the Department of Chemistry, University of California, Davis, California 95616
| | - Alexander M Dizhoor
- From the Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania 19027 and
| | - James B Ames
- the Department of Chemistry, University of California, Davis, California 95616
| |
Collapse
|