1
|
Garaeva N, Fatkhullin B, Murzakhanov F, Gafurov M, Golubev A, Bikmullin A, Glazyrin M, Kieffer B, Jenner L, Klochkov V, Aganov A, Rogachev A, Ivankov O, Validov S, Yusupov M, Usachev K. Structural aspects of RimP binding on small ribosomal subunit from Staphylococcus aureus. Structure 2024; 32:74-82.e5. [PMID: 38000368 DOI: 10.1016/j.str.2023.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/18/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023]
Abstract
Ribosome biogenesis is an energy-intense multistep process where even minimal defects can cause severe phenotypes up to cell death. Ribosome assembly is facilitated by biogenesis factors such as ribosome assembly factors. These proteins facilitate the interaction of ribosomal proteins with rRNA and correct rRNA folding. One of these maturation factors is RimP which is required for efficient 16S rRNA processing and 30S ribosomal subunit assembly. Here, we describe the binding mode of Staphylococcus aureus RimP to the small ribosomal subunit and present a 4.2 Å resolution cryo-EM reconstruction of the 30S-RimP complex. Together with the solution structure of RimP solved by NMR spectroscopy and RimP-uS12 complex analysis by EPR, DEER, and SAXS approaches, we show the specificity of RimP binding to the 30S subunit from S. aureus. We believe the results presented in this work will contribute to the understanding of the RimP role in the ribosome assembly mechanism.
Collapse
Affiliation(s)
- Nataliia Garaeva
- Laboratory for Structural Analysis of Biomacromolecules, Federal Research Center «Kazan Scientific Center of Russian Academy of Sciences», Kazan 420111, Russian Federation; Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russian Federation
| | - Bulat Fatkhullin
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, Université de Strasbourg, 67400 Illkirch, France; Institute of Protein Research RAS, 4 Institutskaya, Pushchino 142290, Russian Federation
| | - Fadis Murzakhanov
- Institute of Physics, Kazan Federal University, Kazan 420008, Russian Federation
| | - Marat Gafurov
- Institute of Physics, Kazan Federal University, Kazan 420008, Russian Federation
| | - Alexander Golubev
- Laboratory for Structural Analysis of Biomacromolecules, Federal Research Center «Kazan Scientific Center of Russian Academy of Sciences», Kazan 420111, Russian Federation
| | - Aydar Bikmullin
- Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russian Federation
| | - Maxim Glazyrin
- Laboratory for Structural Analysis of Biomacromolecules, Federal Research Center «Kazan Scientific Center of Russian Academy of Sciences», Kazan 420111, Russian Federation
| | - Bruno Kieffer
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, Université de Strasbourg, 67400 Illkirch, France
| | - Lasse Jenner
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, Université de Strasbourg, 67400 Illkirch, France
| | - Vladimir Klochkov
- NMR Laboratory, Medical Physics Department, Institute of Physics, Kazan Federal University, Kazan 420008, Russian Federation
| | - Albert Aganov
- NMR Laboratory, Medical Physics Department, Institute of Physics, Kazan Federal University, Kazan 420008, Russian Federation
| | - Andrey Rogachev
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russian Federation; Joint Institute for Nuclear Research, Dubna 141980, Russian Federation
| | - Oleksandr Ivankov
- Joint Institute for Nuclear Research, Dubna 141980, Russian Federation
| | - Shamil Validov
- Laboratory for Structural Analysis of Biomacromolecules, Federal Research Center «Kazan Scientific Center of Russian Academy of Sciences», Kazan 420111, Russian Federation; Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russian Federation
| | - Marat Yusupov
- Laboratory for Structural Analysis of Biomacromolecules, Federal Research Center «Kazan Scientific Center of Russian Academy of Sciences», Kazan 420111, Russian Federation; Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, Université de Strasbourg, 67400 Illkirch, France.
| | - Konstantin Usachev
- Laboratory for Structural Analysis of Biomacromolecules, Federal Research Center «Kazan Scientific Center of Russian Academy of Sciences», Kazan 420111, Russian Federation; Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russian Federation.
| |
Collapse
|
2
|
Bikmullin AG, Fatkhullin B, Stetsenko A, Gabdulkhakov A, Garaeva N, Nurullina L, Klochkova E, Golubev A, Khusainov I, Trachtmann N, Blokhin D, Guskov A, Validov S, Usachev K, Yusupov M. Yet Another Similarity between Mitochondrial and Bacterial Ribosomal Small Subunit Biogenesis Obtained by Structural Characterization of RbfA from S. aureus. Int J Mol Sci 2023; 24:ijms24032118. [PMID: 36768442 PMCID: PMC9917171 DOI: 10.3390/ijms24032118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Ribosome biogenesis is a complex and highly accurate conservative process of ribosomal subunit maturation followed by association. Subunit maturation comprises sequential stages of ribosomal RNA and proteins' folding, modification and binding, with the involvement of numerous RNAses, helicases, GTPases, chaperones, RNA, protein-modifying enzymes, and assembly factors. One such assembly factor involved in bacterial 30S subunit maturation is ribosomal binding factor A (RbfA). In this study, we present the crystal (determined at 2.2 Å resolution) and NMR structures of RbfA as well as the 2.9 Å resolution cryo-EM reconstruction of the 30S-RbfA complex from Staphylococcus aureus (S. aureus). Additionally, we show that the manner of RbfA action on the small ribosomal subunit during its maturation is shared between bacteria and mitochondria. The obtained results clarify the function of RbfA in the 30S maturation process and its role in ribosome functioning in general. Furthermore, given that S. aureus is a serious human pathogen, this study provides an additional prospect to develop antimicrobials targeting bacterial pathogens.
Collapse
Affiliation(s)
- Aydar G. Bikmullin
- Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420021 Kazan, Russia
| | - Bulat Fatkhullin
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, University of Strasbourg, 67400 Illkirch, France
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Artem Stetsenko
- Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, 9700 AB Groningen, The Netherlands
| | - Azat Gabdulkhakov
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Natalia Garaeva
- Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420021 Kazan, Russia
| | - Liliia Nurullina
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, University of Strasbourg, 67400 Illkirch, France
| | - Evelina Klochkova
- Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420021 Kazan, Russia
| | - Alexander Golubev
- Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420021 Kazan, Russia
| | | | - Natalie Trachtmann
- Institute of Microbiology, University of Stuttgart, D-70569 Stuttgart, Germany
| | - Dmitriy Blokhin
- NMR Laboratory, Medical Physics Department, Institute of Physics, Kazan Federal University, 420008 Kazan, Russia
| | - Albert Guskov
- Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, 9700 AB Groningen, The Netherlands
| | - Shamil Validov
- Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420021 Kazan, Russia
- Federal Research Center “Kazan Scientific Center of Russian Academy of Sciences”, 420111 Kazan, Russia
| | - Konstantin Usachev
- Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420021 Kazan, Russia
- Federal Research Center “Kazan Scientific Center of Russian Academy of Sciences”, 420111 Kazan, Russia
| | - Marat Yusupov
- Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420021 Kazan, Russia
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, University of Strasbourg, 67400 Illkirch, France
- Correspondence:
| |
Collapse
|
3
|
Bikmullin AG, Nurullina LI, Garaeva NS, Klochkova EA, Blokhin DS, Golubev AA, Validov SZ, Khusainov IS, Usachev KS, Yusupov MM. In vitro Reconstitution of the S. aureus 30S Ribosomal Subunit and RbfA Factor Complex for Structural Studies. BIOCHEMISTRY (MOSCOW) 2020; 85:545-552. [PMID: 32571184 DOI: 10.1134/s000629792005003x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ribosome-binding factor A (RbfA) from Staphylococcus aureus is a cold adaptation protein that is required for the growth of pathogenic cells at low temperatures (10-15°C). RbfA is involved in the processing of 16S rRNA, as well as in the assembly and stabilization of the small 30S ribosomal subunit. Structural studies of the 30S-RbfA complex will help to better understand their interaction, the mechanism of such complexes, and the fundamental process such as 30S subunit assembly that determines and controls the overall level of protein biosynthesis. This article describes protocols for preparation of RbfA and the small 30S ribosomal subunits and reconstitution and optimization of the 30S-RbfA complex to obtain samples suitable for cryo-electron microscopy studies.
Collapse
Affiliation(s)
| | | | - N S Garaeva
- Kazan Federal University, Kazan, 420008, Russia
| | | | - D S Blokhin
- Kazan Federal University, Kazan, 420008, Russia
| | - A A Golubev
- Kazan Federal University, Kazan, 420008, Russia.,Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch-Graffenstaden, 67400, France
| | | | - I Sh Khusainov
- Kazan Federal University, Kazan, 420008, Russia.,Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch-Graffenstaden, 67400, France.,Max Planck Institute for Biophysics, Frankfurt-am-Main, 60438, Germany
| | - K S Usachev
- Kazan Federal University, Kazan, 420008, Russia.
| | - M M Yusupov
- Kazan Federal University, Kazan, 420008, Russia. .,Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch-Graffenstaden, 67400, France
| |
Collapse
|