1
|
Stykel MG, Siripala SV, Soubeyrand E, Coackley CL, Lu P, Camargo S, Thevasenan S, Figueroa GB, So RWL, Stuart E, Panchal R, Akrioti EK, Joseph JT, Haji-Ghassemi O, Taoufik E, Akhtar TA, Watts JC, Ryan SD. G6PD deficiency triggers dopamine loss and the initiation of Parkinson's disease pathogenesis. Cell Rep 2025; 44:115178. [PMID: 39772392 DOI: 10.1016/j.celrep.2024.115178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/20/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Loss of dopaminergic neurons in Parkinson's disease (PD) is preceded by loss of synaptic dopamine (DA) and accumulation of proteinaceous aggregates. Linking these deficits is critical to restoring DA signaling in PD. Using murine and human pluripotent stem cell (hPSC) models of PD coupled with human postmortem tissue, we show that accumulation of α-syn micro-aggregates impairs metabolic flux through the pentose phosphate pathway (PPP). This leads to decreased nicotinamide adenine dinucleotide phosphate (NADP/H) and glutathione (GSH) levels, resulting in DA oxidation and decreased total DA levels. We find that α-syn anchors the PPP enzyme G6PD to synaptic vesicles via the α-syn C terminus and that this interaction is lost in PD. Furthermore, G6PD clinical mutations are associated with PD diagnosis, and G6PD deletion phenocopies PD pathology. Finally, we show that restoring NADPH or GSH levels through genetic and pharmacological intervention blocks DA oxidation and rescues steady-state DA levels, identifying G6PD as a pharmacological target against PD.
Collapse
Affiliation(s)
- Morgan G Stykel
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph ON, Canada
| | - Shehani V Siripala
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph ON, Canada; Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada
| | - Eric Soubeyrand
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph ON, Canada
| | - Carla L Coackley
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph ON, Canada
| | - Ping Lu
- Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada
| | - Suelen Camargo
- Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada
| | - Sharanya Thevasenan
- Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada
| | | | - Raphaella W L So
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Erica Stuart
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Rachi Panchal
- Biological Sciences, Hellenic Pasteur Institute, Athens, Greece
| | - Elissavet-Kalliopi Akrioti
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens, Greece
| | - Jeffery T Joseph
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | - Omid Haji-Ghassemi
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Era Taoufik
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens, Greece
| | - Tariq A Akhtar
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph ON, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Scott D Ryan
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph ON, Canada; Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
2
|
Toleikis Z, Paluch P, Kuc E, Petkus J, Sulskis D, Org-Tago ML, Samoson A, Smirnovas V, Stanek J, Lends A. Solid-state NMR backbone chemical shift assignments of α-synuclein amyloid fibrils at fast MAS regime. BIOMOLECULAR NMR ASSIGNMENTS 2024; 18:181-186. [PMID: 38951472 DOI: 10.1007/s12104-024-10186-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/18/2024] [Indexed: 07/03/2024]
Abstract
The α-synuclein (α-syn) amyloid fibrils are involved in various neurogenerative diseases. Solid-state NMR (ssNMR) has been showed as a powerful tool to study α-syn aggregates. Here, we report the 1H, 13C and 15N back-bone chemical shifts of a new α-syn polymorph obtained using proton-detected ssNMR spectroscopy under fast (95 kHz) magic-angle spinning conditions. The manual chemical shift assignments were cross-validated using FLYA algorithm. The secondary structural elements of α-syn fibrils were calculated using 13C chemical shift differences and TALOS software.
Collapse
Affiliation(s)
- Zigmantas Toleikis
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV-1006, Latvia
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio 7, Vilnius, LT-10257, Lithuania
| | - Piotr Paluch
- Faculty of Chemistry, University of Warsaw, Pasteura 1, Warsaw, 02-093, Poland
| | - Ewelina Kuc
- Faculty of Chemistry, University of Warsaw, Pasteura 1, Warsaw, 02-093, Poland
| | - Jana Petkus
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV-1006, Latvia
| | - Darius Sulskis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio 7, Vilnius, LT-10257, Lithuania
| | - Mai-Liis Org-Tago
- Tallin University of Technology, Ehitajate tee 5, Tallinn, 19086, Estonia
| | - Ago Samoson
- Tallin University of Technology, Ehitajate tee 5, Tallinn, 19086, Estonia
| | - Vytautas Smirnovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio 7, Vilnius, LT-10257, Lithuania
| | - Jan Stanek
- Faculty of Chemistry, University of Warsaw, Pasteura 1, Warsaw, 02-093, Poland
| | - Alons Lends
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV-1006, Latvia.
| |
Collapse
|
3
|
Ladizhansky V, Palani RS, Mardini M, Griffin RG. Dipolar Recoupling in Rotating Solids. Chem Rev 2024; 124:12844-12917. [PMID: 39504237 PMCID: PMC12117474 DOI: 10.1021/acs.chemrev.4c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Magic angle spinning (MAS) nuclear magnetic resonance (NMR) has evolved significantly over the past three decades and established itself as a vital tool for the structural analysis of biological macromolecules and materials. This review delves into the development and application of dipolar recoupling techniques in MAS NMR, which are crucial for obtaining detailed structural and dynamic information. We discuss a variety of homonuclear and heteronuclear recoupling methods which are essential for measuring spatial restraints and explain in detail the spin dynamics that these sequences generate. We also explore recent developments in high spinning frequency MAS, proton detection, and dynamic nuclear polarization, underscoring their importance in advancing biomolecular NMR. Our aim is to provide a comprehensive account of contemporary dipolar recoupling methods, their principles, and their application to structural biology and materials, highlighting significant contributions to the field and emerging techniques that enhance resolution and sensitivity in MAS NMR spectroscopy.
Collapse
Affiliation(s)
- Vladimir Ladizhansky
- Biophysics Interdepartmental Group and Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Ravi Shankar Palani
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michael Mardini
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Robert G Griffin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
4
|
Ansari S, Lagasca D, Dumarieh R, Xiao Y, Krishna S, Li Y, Frederick KK. In cell NMR reveals cells selectively amplify and structurally remodel amyloid fibrils. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612142. [PMID: 39314304 PMCID: PMC11419106 DOI: 10.1101/2024.09.09.612142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Amyloid forms of α-synuclein adopt different conformations depending on environmental conditions. Advances in structural biology have accelerated fibril characterization. However, it remains unclear which conformations predominate in biological settings because current methods typically not only require isolating fibrils from their native environments, but they also do not provide insight about flexible regions. To address this, we characterized α-syn amyloid seeds and used sensitivity enhanced nuclear magnetic resonance to investigate the amyloid fibrils resulting from seeded amyloid propagation in different settings. We found that the amyloid fold and conformational preferences of flexible regions are faithfully propagated in vitro and in cellular lysates. However, seeded propagation of amyloids inside cells led to the minority conformation in the seeding population becoming predominant and more ordered, and altered the conformational preferences of flexible regions. The examination of the entire ensemble of protein conformations in biological settings that is made possible with this approach may advance our understanding of protein misfolding disorders and facilitate structure-based drug design efforts.
Collapse
Affiliation(s)
- Shoyab Ansari
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
| | - Dominique Lagasca
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
| | - Rania Dumarieh
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
| | - Yiling Xiao
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
| | - Sakshi Krishna
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
| | - Yang Li
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
| | - Kendra K. Frederick
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
- Center for Alzheimer’s and Neurodegenerative Disease, UT Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
5
|
Lomeli-Lepe AK, Castañeda-Cabral JL, López-Pérez SJ. Synucleinopathies: Intrinsic and Extrinsic Factors. Cell Biochem Biophys 2023; 81:427-442. [PMID: 37526884 DOI: 10.1007/s12013-023-01154-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/23/2023] [Indexed: 08/02/2023]
Abstract
α-Synucleinopathies are a group of neurodegenerative disorders characterized by alterations in α-synuclein (α-syn), a protein associated with membrane phospholipids, whose precise function in normal cells is still unknown. These kinds of diseases are caused by multiple factors, but the regulation of the α-syn gene is believed to play a central role in the pathology of these disorders; therefore, the α-syn gene is one of the most studied genes. α-Synucleinopathies are complex disorders that derive from the interaction between genetic and environmental factors. Here, we offer an update on the landscape of the epigenetic regulation of α-syn gene expression that has been linked with α-synucleinopathies. We also delve into the reciprocal influence between epigenetic modifications and other factors related to these disorders, such as posttranslational modifications, microbiota participation, interactions with lipids, neuroinflammation and oxidative stress, to promote α-syn aggregation by acting on the transcription and/or translation of the α-syn gene.
Collapse
Affiliation(s)
- Alma Karen Lomeli-Lepe
- Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, Guadalajara, JAL, México
| | - Jose Luis Castañeda-Cabral
- Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, Guadalajara, JAL, México
| | | |
Collapse
|
6
|
Khare SD, Chinchilla P, Baum J. Multifaceted interactions mediated by intrinsically disordered regions play key roles in alpha synuclein aggregation. Curr Opin Struct Biol 2023; 80:102579. [PMID: 37060757 PMCID: PMC10910670 DOI: 10.1016/j.sbi.2023.102579] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 04/17/2023]
Abstract
The aggregation of Alpha Synuclein (α-Syn) into fibrils is associated with the pathology of several neurodegenerative diseases. Pathologic aggregates of α-Syn adopt multiple fibril topologies and are known to be transferred between cells via templated seeding. Monomeric α-Syn is an intrinsically disordered protein (IDP) with amphiphilic N-terminal, hydrophobic-central, and negatively charged C-terminal domains. Here, we review recent work elucidating the mechanism of α-Syn aggregation and identify the key and multifaceted roles played by the N- and C-terminal domains in the initiation and growth of aggregates as well as in the templated seeding involved in cell-to-cell propagation. The charge content of the C-terminal domain, which is sensitive to environmental conditions like organelle pH, is a key regulator of intermolecular interactions involved in fibril growth and templated propagation. An appreciation of the complex and multifaceted roles played by the intrinsically disordered terminal domains suggests novel opportunities for the development of potent inhibitors against synucleinopathies.
Collapse
Affiliation(s)
- Sagar D Khare
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA; Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ 08854, USA
| | - Priscilla Chinchilla
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Jean Baum
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
7
|
Fridolf S, Pham QD, Pallbo J, Bernfur K, Linse S, Topgaard D, Sparr E. Ganglioside GM3 stimulates lipid-protein co-assembly in α-synuclein amyloid formation. Biophys Chem 2023; 293:106934. [PMID: 36493587 DOI: 10.1016/j.bpc.2022.106934] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/04/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022]
Abstract
Parkinson's disease is characterized by the aggregation of the presynaptic protein α-synuclein (αSyn), and its co-assembly with lipids and other cellular matter in the brain. Here we investigated lipid-protein co-assembly in a system composed of αSyn and model membranes containing the glycolipid ganglioside GM3. We quantified the uptake of lipids into the co-assembled aggregates and investigated how lipid molecular dynamics is altered by being present in the co-assemblies using solution 1H- and solid-state 13C NMR spectroscopy. Aggregate morphology was studied using cryo-TEM. The overall lipid uptake in the co-assembled aggregates was found to increase with the molar ratio of GM3 in the vesicles. The lipids present in the co-assembled aggregates have reduced acyl chain and headgroup dynamics compared to the protein-free bilayer system. These findings may improve our understanding of how different types of lipids can influence the composition of αSyn aggregates, which may have consequences for amyloid formation in vivo.
Collapse
Affiliation(s)
- Simon Fridolf
- Division of Physical Chemistry, Lund University, Box 124, 221 00 Lund, Sweden.
| | - Quoc Dat Pham
- Division of Physical Chemistry, Lund University, Box 124, 221 00 Lund, Sweden
| | - Jon Pallbo
- Division of Physical Chemistry, Lund University, Box 124, 221 00 Lund, Sweden
| | - Katja Bernfur
- Biochemistry and Structural Biology, Lund University, Box 124, 221 00 Lund, Sweden
| | - Sara Linse
- Biochemistry and Structural Biology, Lund University, Box 124, 221 00 Lund, Sweden
| | - Daniel Topgaard
- Division of Physical Chemistry, Lund University, Box 124, 221 00 Lund, Sweden
| | - Emma Sparr
- Division of Physical Chemistry, Lund University, Box 124, 221 00 Lund, Sweden
| |
Collapse
|
8
|
Abstract
In the last two decades, solid-state nuclear magnetic resonance (ssNMR) spectroscopy has transformed from a spectroscopic technique investigating small molecules and industrial polymers to a potent tool decrypting structure and underlying dynamics of complex biological systems, such as membrane proteins, fibrils, and assemblies, in near-physiological environments and temperatures. This transformation can be ascribed to improvements in hardware design, sample preparation, pulsed methods, isotope labeling strategies, resolution, and sensitivity. The fundamental engagement between nuclear spins and radio-frequency pulses in the presence of a strong static magnetic field is identical between solution and ssNMR, but the experimental procedures vastly differ because of the absence of molecular tumbling in solids. This review discusses routinely employed state-of-the-art static and MAS pulsed NMR methods relevant for biological samples with rotational correlation times exceeding 100's of nanoseconds. Recent developments in signal filtering approaches, proton methodologies, and multiple acquisition techniques to boost sensitivity and speed up data acquisition at fast MAS are also discussed. Several examples of protein structures (globular, membrane, fibrils, and assemblies) solved with ssNMR spectroscopy have been considered. We also discuss integrated approaches to structurally characterize challenging biological systems and some newly emanating subdisciplines in ssNMR spectroscopy.
Collapse
Affiliation(s)
- Sahil Ahlawat
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad 500046, Telangana, India
| | - Kaustubh R Mote
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad 500046, Telangana, India
| | - Nils-Alexander Lakomek
- University of Düsseldorf, Institute for Physical Biology, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Vipin Agarwal
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad 500046, Telangana, India
| |
Collapse
|
9
|
Dent SE, King DP, Osterberg VR, Adams EK, Mackiewicz MR, Weissman TA, Unni VK. Phosphorylation of the aggregate-forming protein alpha-synuclein on serine-129 inhibits its DNA-bending properties. J Biol Chem 2021; 298:101552. [PMID: 34973339 PMCID: PMC8800120 DOI: 10.1016/j.jbc.2021.101552] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 01/08/2023] Open
Abstract
Alpha-synuclein (aSyn) is a vertebrate protein, normally found within the presynaptic nerve terminal and nucleus, which is known to form somatic and neuritic aggregates in certain neurodegenerative diseases. Disease-associated aggregates of aSyn are heavily phosphorylated at serine-129 (pSyn), while normal aSyn protein is not. Within the nucleus, aSyn can directly bind DNA, but the mechanism of binding and the potential modulatory roles of phosphorylation are poorly understood. Here we demonstrate using a combination of electrophoretic mobility shift assay and atomic force microscopy approaches that both aSyn and pSyn can bind DNA within the major groove, in a DNA length-dependent manner and with little specificity for DNA sequence. Our data are consistent with a model in which multiple aSyn molecules bind a single 300 base pair (bp) DNA molecule in such a way that stabilizes the DNA in a bent conformation. We propose that serine-129 phosphorylation decreases the ability of aSyn to both bind and bend DNA, as aSyn binds 304 bp circular DNA forced into a bent shape, but pSyn does not. Two aSyn paralogs, beta- and gamma-synuclein, also interact with DNA differently than aSyn, and do not stabilize similar DNA conformations. Our work suggests that reductions in aSyn's ability to bind and bend DNA induced by serine-129 phosphorylation may be important for modulating aSyn's known roles in DNA metabolism, including the regulation of transcription and DNA repair.
Collapse
Affiliation(s)
- Sydney E Dent
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, Oregon, 97239, USA
| | - Dennisha P King
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, Oregon, 97239, USA
| | - Valerie R Osterberg
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, Oregon, 97239, USA
| | - Eleanor K Adams
- Department of Chemistry, Portland State University, Portland, Oregon, 97239, USA
| | - Marilyn R Mackiewicz
- Department of Chemistry, Portland State University, Portland, Oregon, 97239, USA
| | - Tamily A Weissman
- Department of Biology, Lewis & Clark College, Portland, Oregon, 97219, USA
| | - Vivek K Unni
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, Oregon, 97239, USA; OHSU Parkinson Center, Oregon Health & Science University, Portland, Oregon, 97239, USA.
| |
Collapse
|