1
|
Park H, Banegas DW, Han SY, Kim HS, Cha IH, Ryu HJ, Kim D. Primary palatal sarcoma exhibiting EWSR1::RORß fusion: a first case report and literature review. Oral Surg Oral Med Oral Pathol Oral Radiol 2024; 138:e113-e119. [PMID: 39069454 DOI: 10.1016/j.oooo.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/23/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024]
Abstract
In this report, a tumor exhibited EWSR1::RORß gene fusion, to our knowledge, is the first such reported case. The Ewing sarcoma breakpoint region 1 gene (EWSR1) is known to be associated with several soft tissue tumors although its specific role remains unclear. Its fusion with a member of the ETS family, including FLI1 and ERG, results in Ewing sarcoma, and its fusion with other genes unrelated to the ETS family, including NFATC2 and PATZ1, results in round cell sarcoma with EWSR1-non-ETS fusions, previously referred to as Ewing-like sarcoma. RORß encodes retinoic acid-related orphan receptor ß, a nuclear receptor (NR), and is involved in circadian rhythm modulation and cancer regulation. The specific role of RORß in tumorigenesis remains unclear; however, this case report suggests that it may form part of a new tumorigenic entity.
Collapse
Affiliation(s)
- Haein Park
- Department of Oral and Maxillofacial Surgery, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Daniel Wilfredo Banegas
- Department of Oral and Maxillofacial Surgery, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Seung-Yong Han
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Hyun Sil Kim
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, Republic of Korea; Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - In-Ho Cha
- Department of Oral and Maxillofacial Surgery, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Hyang Joo Ryu
- Department of Pathology, Yonsei University College of Medicine, Severance Hospital, Seoul, Republic of Korea
| | - Dongwook Kim
- Department of Oral and Maxillofacial Surgery, Yonsei University College of Dentistry, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Machado I, Llombart-Bosch A, Charville GW, Navarro S, Domínguez Franjo MP, Bridge JA, Linos K. Sarcomas with EWSR1::Non-ETS Fusion (EWSR1::NFATC2 and EWSR1::PATZ1). Surg Pathol Clin 2024; 17:31-55. [PMID: 38278606 DOI: 10.1016/j.path.2023.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
The wide application of increasingly advanced molecular studies in routine clinical practice has allowed a detailed, albeit still incomplete, genetic subclassification of undifferentiated round cell sarcomas. The WHO classification continues to include provisional molecular entities, whose clinicopathologic features are in the early stages of evolution. This review focuses on the clinicopathologic, molecular, and prognostic features of undifferentiated round cell sarcomas with EWSR1/FUS::NFATC2 or EWSR1::PATZ1 fusions. Classic histopathologic findings, uncommon variations, and diagnostic pitfalls are addressed, along with the utility of recently developed immunohistochemical and molecular markers.
Collapse
Affiliation(s)
- Isidro Machado
- Pathology Department, Instituto Valenciano de Oncología, Valencia, Spain; Patologika Laboratory, Hospital Quiron-Salud, Valencia, Spain; Pathology Department, University of Valencia, Valencia, Spain.
| | - Antonio Llombart-Bosch
- Pathology Department, university of Valencia, Spain and Cancer CIBER (CIBERONC), Madrid, Spain
| | | | - Samuel Navarro
- Pathology Department, university of Valencia, Spain and Cancer CIBER (CIBERONC), Madrid, Spain
| | | | - Julia A Bridge
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA; Division of Molecular Pathology, ProPath, Dallas, TX, USA
| | - Konstantinos Linos
- Department of Pathology & Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
3
|
Glembocki AI, Somers GR. Prognostic and predictive biomarkers in paediatric solid tumours. Pathology 2024; 56:283-296. [PMID: 38216399 DOI: 10.1016/j.pathol.2023.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 01/14/2024]
Abstract
Characterisation of histological, immunohistochemical and molecular prognostic and predictive biomarkers has contributed significantly to precision medicine and better outcomes in the management of paediatric solid tumours. Prognostic biomarkers allow predictions to be made regarding a tumour's aggressiveness and clinical course, whereas predictive biomarkers help determine responses to a specific treatment. This review summarises prognostic biomarkers currently used in the more common paediatric solid tumours, with a brief commentary on the most relevant less common predictive biomarkers. MYCN amplification is the most important genetic alteration in neuroblastoma prognosis, and the histological classification devised by Shimada in 1999 is still used in routine diagnosis. Moreover, a new subgrouping of unfavourable histology neuroblastoma enables immunohistochemical characterisation of tumours with markedly different genetic features and prognosis. The predominant histology and commonly observed cytogenetic abnormalities are recognised outcome predictors in Wilms tumour. Evaluation for anaplasia, which is tightly associated with TP53 gene mutations and poor outcomes, is central in both the International Society of Paediatric Oncology and the Children's Oncology Group approaches to disease classification. Characterisation of distinct genotype-phenotype subclasses and critical mutations has expanded overall understanding of hepatoblastoma outcomes. The C1 subclass hepatoblastoma and CTNNB1 mutations are associated with good prognosis. In contrast, the C2 subclass, NFE2L2 mutations, TERT promoter mutations and high expression of oncofetal proteins and stem cell markers are associated with poor outcomes. Risk stratification in sarcomas is highly variable depending on the entity. The prognosis of rhabdomyosarcoma, for example, primarily depends on histological and molecular characteristics. Advances in our understanding of clinically significant biomarkers will translate into more precise diagnoses, improved risk stratification and more effective and less toxic treatment in this challenging group of patients.
Collapse
Affiliation(s)
- Aida I Glembocki
- Division of Pathology, Department of Paediatric Laboratory Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Gino R Somers
- Division of Pathology, Department of Paediatric Laboratory Medicine, Hospital for Sick Children, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
4
|
Towery EA, Papke DJ. Emerging mesenchymal tumour types and biases in the era of ubiquitous sequencing. J Clin Pathol 2023; 76:802-812. [PMID: 37550012 DOI: 10.1136/jcp-2022-208684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/24/2023] [Indexed: 08/09/2023]
Abstract
New tumour types are being described at increasing frequency, and most new tumour types are now identified via retrospective review of next-generation sequencing data. This contrasts with the traditional, morphology-based method of identifying new tumour types, and while the sequencing-based approach has accelerated progress in the field, it has also introduced novel and under-recognised biases. Here, we discuss tumour types identified based on morphology, including superficial CD34-positive fibroblastic tumour, pseudoendocrine sarcoma and cutaneous clear cell tumour with melanocytic differentiation and ACTIN::MITF fusion. We also describe tumour types identified primarily by next-generation sequencing, including epithelioid and spindle cell rhabdomyosarcoma, round cell neoplasms with EWSR1::PATZ1 fusion, cutaneous melanocytic tumour with CRTC1::TRIM11 fusion, clear cell tumour with melanocytic differentiation and MITF::CREM fusion and GLI1-altered mesenchymal neoplasms, including nested glomoid neoplasm.
Collapse
|
5
|
Folpe AL. ‘I Can’t Keep Up!’: an update on advances in soft tissue pathology occurring after the publication of the 2020 World Health Organization classification of soft tissue and bone tumours. Histopathology 2021; 80:54-75. [DOI: 10.1111/his.14460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/22/2022]
Affiliation(s)
- Andrew L Folpe
- Department of Laboratory Medicine and Pathology Mayo Clinic Rochester MN USA
| |
Collapse
|
6
|
Flucke U, van Noesel MM, Siozopoulou V, Creytens D, Tops BBJ, van Gorp JM, Hiemcke-Jiwa LS. EWSR1-The Most Common Rearranged Gene in Soft Tissue Lesions, Which Also Occurs in Different Bone Lesions: An Updated Review. Diagnostics (Basel) 2021; 11:diagnostics11061093. [PMID: 34203801 PMCID: PMC8232650 DOI: 10.3390/diagnostics11061093] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 01/09/2023] Open
Abstract
EWSR1 belongs to the FET family of RNA-binding proteins including also Fused in Sarcoma (FUS), and TATA-box binding protein Associated Factor 15 (TAF15). As consequence of the multifunctional role of EWSR1 leading to a high frequency of transcription of the chromosomal region where the gene is located, EWSR1 is exposed to aberrations such as rearrangements. Consecutive binding to other genes leads to chimeric proteins inducing oncogenesis. The other TET family members are homologous. With the advent of widely used modern molecular techniques during the last decades, it has become obvious that EWSR1 is involved in the development of diverse benign and malignant tumors with mesenchymal, neuroectodermal, and epithelial/myoepithelial features. As oncogenic transformation mediated by EWSR1-fusion proteins leads to such diverse tumor types, there must be a selection on the multipotent stem cell level. In this review, we will focus on the wide variety of soft tissue and bone entities, including benign and malignant lesions, harboring EWSR1 rearrangement. Fusion gene analysis is the diagnostic gold standard in most of these tumors. We present clinicopathologic, immunohistochemical, and molecular features and discuss differential diagnoses.
Collapse
Affiliation(s)
- Uta Flucke
- Department of Pathology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (M.M.v.N.); (B.B.J.T.); (L.S.H.-J.)
- Correspondence: ; Tel.: +31-24-36-14387; Fax: +31-24-36-68750
| | - Max M. van Noesel
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (M.M.v.N.); (B.B.J.T.); (L.S.H.-J.)
- Division Cancer & Imaging, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | | | - David Creytens
- Department of Pathology, Ghent University Hospital, Ghent University, 9000 Ghent, Belgium;
| | - Bastiaan B. J. Tops
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (M.M.v.N.); (B.B.J.T.); (L.S.H.-J.)
| | - Joost M. van Gorp
- Department of Pathology, St Antonius Hospital, 3435 CM Nieuwegein, The Netherlands;
| | - Laura S. Hiemcke-Jiwa
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (M.M.v.N.); (B.B.J.T.); (L.S.H.-J.)
| |
Collapse
|