1
|
Ren C, Pan Q, Fu C, Wang P, Zheng Z, Hsu B, Huo L. Phase I, first-in-human study of XTR004, a novel 18F-labeled tracer for myocardial perfusion PET: Biodistribution, radiation dosimetry, pharmacokinetics, and safety after a single injection at rest. J Nucl Cardiol 2024; 34:101823. [PMID: 38360262 DOI: 10.1016/j.nuclcard.2024.101823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/17/2024]
Abstract
OBJECTIVES This study assessed the imaging characteristics, pharmacokinetics and safety of XTR004, a novel 18F-labeled Positron Emission Tomography (PET) myocardial perfusion imaging tracer, after a single injection at rest in humans. METHODS Eleven healthy subjects (eight men and three women) received intravenous XTR004 (239-290 megabecquerel [MBq]). Safety profiles were monitored on the dosing day and three follow-up visits. Multiple whole-body PET scans were conducted over 4.7 h to evaluate biodistribution and radiation dosimetry. Blood and urine samples collected for 7.25 h were metabolically corrected to characterize pharmacokinetics. RESULTS In the first 0-12 min PET images of ten subjects, liver (26.81 ± 4.01), kidney (11.43 ± 2.49), lung (6.75 ± 1.76), myocardium (4.72 ± 0.67) and spleen (3.1 ± 0.84) exhibited the highest percentage of the injected dose (%ID). Myocardial uptake of XTR004 in the myocardium initially reached 4.72 %ID and 7.06 g/mL, and negligibly changed within an hour (Δ: 7.20%, 5.95%). The metabolically corrected plasma peaked at 2.5 min (0.0013896 %ID/g) and halved at 45.2 min. Whole-body effective dose was 0.0165 millisievert (mSv)/MBq. Cumulative urine excretion was 8.18%. Treatment-related adverse events occurred in seven out of eleven subjects (63.6%), but no severe adverse event was reported. CONCLUSIONS XTR004 demonstrated a favorable safety profile, rapid, high, and stable myocardial uptake and excellent potential for PET myocardial perfusion imaging (MPI). Further exploration of XTR004 PET MPI for detecting myocardial ischemia is warranted.
Collapse
Affiliation(s)
- Chao Ren
- Nuclear Medicine Department, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Center for Rare Diseases Research, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Qingqing Pan
- Nuclear Medicine Department, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Center for Rare Diseases Research, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Chao Fu
- Nuclear Medicine Department, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Center for Rare Diseases Research, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Peipei Wang
- Nuclear Medicine Department, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Center for Rare Diseases Research, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Zhiquan Zheng
- Medical Department, Sinotau Pharmaceutical Group, Beijing, China
| | - Bailing Hsu
- Nuclear Science and Engineering Institute, University of Missouri-Columbia, Columbia, MO, USA.
| | - Li Huo
- Nuclear Medicine Department, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Center for Rare Diseases Research, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| |
Collapse
|
2
|
Yu X, Sun H, Xu L, Han Y, Wang C, Li L, Ng YL, Shi F, Qiu J, Huang G, Zhou Y, Chen Y, Liu J. Improved accuracy of the biodistribution and internal radiation dosimetry of 13 N-ammonia using a total-body PET/CT scanner. Med Phys 2023; 50:5865-5874. [PMID: 37177847 DOI: 10.1002/mp.16450] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 04/23/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Conventional short-axis PET typically utilizes multi-bed multi-pass acquisition to produce quantitative whole-body dynamic images and cannot record all the uptake information simultaneously, resulting in errors when fitting the time-activity curves (TACs) and calculating radiation doses. PURPOSE The aim of this study is to evaluate the 13 N-ammonia biodistribution and the internal radiation doses using a 194 cm long total-body PET/CT scanner (uEXPLORER), and make a comparison with the previous short-axis PET results. METHODS Ten subjects (age 40-74 years) received 13 N-NH3 injection (418.1-670.81 MBq) and were under a dynamic scan for about 60 min with using a 3-dimensional whole-body protocol. ROIs were drawn visually on 11 major organs (brain, thyroid, gallbladder, heart wall, kidneys, liver, pancreas, spleen, lungs, bone marrow, and urinary bladder content) for each subject. TACs were generated using Pmod and the absorbed radiation doses were calculated using Olinda 2.2. To compare with the conventional PET/CT, five points were sampled on uEXPLORER's TACs to mimic the result of a short-axis PET/CT (15 cm axial FOV, consisted of 9 or 10 bed positions). Then the TACs were obtained using the multi-exponential fitting method, and the residence time and radiation dose were also calculated and compared with uEXPLORER. RESULTS The highest absorbed organ doses were the pancreas, thyroid, spleen, heart wall, and kidneys for the male. For the female, the first five highest absorbed organ dose coefficients were the pancreas, heart wall, spleen, lungs, and kidneys. The lowest absorbed dose was found in red marrow both for male and female. The simulated short-axis PET can fit TACs well for the gradually-changed uptake organs but typically underestimated for the rapid-uptake organs during the first-10 min, resulting in errors in the calculated radiation dose. CONCLUSION uEXPLORER PET/CT can measure 13 N-ammonia's TACs simultaneously in all organs of the whole body, which can provide more accurate biodistribution and radiation dose estimation compared with the conventional short-axis scanners.
Collapse
Affiliation(s)
- Xiaofeng Yu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Hongyan Sun
- Central Research Institute, United Imaging Healthcare, Shanghai, People's Republic of China
| | - Lian Xu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yuan Han
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Cheng Wang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Lianghua Li
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yee Ling Ng
- Central Research Institute, United Imaging Healthcare, Shanghai, People's Republic of China
| | - Fuxiao Shi
- Central Research Institute, United Imaging Healthcare, Shanghai, People's Republic of China
| | - Ju Qiu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Gang Huang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yun Zhou
- Central Research Institute, United Imaging Healthcare, Shanghai, People's Republic of China
| | - Yumei Chen
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
3
|
Long Y, Yi C, Wu R, Zhang Y, Zhang B, Shi X, Zhang X, Zha Z. Biodistribution and radiation dosimetry in cancer patients of the ascorbic acid analogue 6-Deoxy-6-[ 18F] fluoro-L-ascorbic acid PET imaging: first-in-human study. Eur J Nucl Med Mol Imaging 2023; 50:3072-3083. [PMID: 37191679 DOI: 10.1007/s00259-023-06262-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 05/06/2023] [Indexed: 05/17/2023]
Abstract
PURPOSE Clinical studies on the use of ascorbic acid (AA) have become a hot spot in cancer research. There remains an unmet need to assess AA utilization in normal tissues and tumors. 6-Deoxy-6-[18F]fluoro-L-ascorbic acid ([18F]DFA) displayed distinctive tumor localization and similar distribution as AA in mice. In this study, to evaluate the distribution, tumor detecting ability and radiation dosimetry of [18F]DFA in humans, we performed the first-in-human PET imaging study. METHODS Six patients with a variety of cancers underwent whole-body PET/CT scans after injection of 313-634 MBq of [18F]DFA. Five sequential dynamic emission scans in each patient were acquired at 5-60 min. Regions of interest (ROI) were delineated along the edge of the source-organ and tumor on the transverse PET slice. Tumor-to-background ratio (TBR) was obtained using the tumor SUVmax to background SUVmean. Organ residence times were calculated via time-activity curves, and human absorbed doses were estimated from organ residence time using the medical internal radiation dosimetry method. RESULTS [18F]DFA was well tolerated in all subjects without serious adverse event. The high uptake was found in the liver, adrenal glands, kidneys, choroid plexus, and pituitary gland. [18F]DFA accumulated in tumor rapidly and the TBR increased over time. The average SUVmax of [18F]DFA in tumor lesions was 6.94 ± 3.92 (range 1.62-22.85, median 5.94). The organs with the highest absorbed doses were the liver, spleen, adrenal glands, and kidneys. The mean effective dose was estimated to be 1.68 ± 0.36 E-02 mSv/MBq. CONCLUSIONS [18F]DFA is safe to be used in humans. It showed a similar distribution pattern as AA, and displayed high uptake and retention in tumors with appropriate kinetics. [18F]DFA might be a promising radiopharmaceutical in identifying tumors with high affinity for SVCT2 and monitoring AA distribution in both normal tissues and tumors. TRIAL REGISTRATION Chinese Clinical Trial Registry; Registered Number: ChiCTR2200057842 (registered 19 March 2022).
Collapse
Affiliation(s)
- Yali Long
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Er Road, Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Chang Yi
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Er Road, Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Renbo Wu
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Er Road, Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Yuying Zhang
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Er Road, Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Bing Zhang
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Er Road, Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Xinchong Shi
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Er Road, Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Xiangsong Zhang
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Er Road, Guangzhou, 510080, Guangdong Province, People's Republic of China.
| | - Zhihao Zha
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Er Road, Guangzhou, 510080, Guangdong Province, People's Republic of China.
| |
Collapse
|
4
|
Chen Z, Long Y, Zhang Y, Zhang B, He Q, Zhang X. Detection efficacy of analog [ 18F]FDG PET/CT, digital [ 18F]FDG, and [ 13N]NH 3 PET/CT: a prospective, comparative study of patients with lung adenocarcinoma featuring ground glass nodules. Eur Radiol 2023; 33:2118-2127. [PMID: 36322193 DOI: 10.1007/s00330-022-09186-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVES This prospective study compared the detection efficacy of analog 18F-fluoro-2-deoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT) (aF PET/CT), digital [18F]FDG PET/CT (dF PET/CT), and digital 13N-ammonia (13N-NH3) PET/CT (dN PET/CT) for patients with lung adenocarcinoma featuring ground glass nodules (GGNs). METHODS Eighty-seven patients with lung adenocarcinoma featuring GGNs who underwent dF and dN PET/CT were enrolled. Based on the GGN component, diameter, and solid-part size, 87 corresponding patients examined using aF PET/CT were included, with age, sex, and lesion characteristics closely matched. Images were visually evaluated, and the tumor to background ratio (TBR) was used for semi-quantitative analysis. RESULTS Ultimately, 40 and 47 patients with pure GGNs (pGGNs) and mixed GGNs (mGGNs), respectively, were included. dF PET/CT revealed more positive lesions and higher tracer uptake in GGNs than did aF PET/CT (53/87 vs. 26/87, p < 0.05; TBR: 3.08 ± 4.85 vs. 1.42 ± 0.93, p < 0.05), especially in mGGNs (44/47 vs. 26/47, p < 0.05; TBR: 4.48 ± 6.17 vs. 1.78 ± 1.16, p < 0.05). However, dN PET/CT detected more positive lesions than did dF PET/CT (71/87 vs. 53/87, p < 0.05), especially in pGGNs (24/40 vs. 9/40, p < 0.05). CONCLUSIONS dF PET/CT provides superior detection efficacy over aF PET/CT for patients with lung adenocarcinoma featuring GGNs, particularly mGGNs. dN PET/CT revealed superior detection efficacy over dF PET/CT, particularly in pGGNs. aF, dF, and dN PET/CT are valuable non-invasive examinations for lung cancer featuring GGNs, with dN PET/CT offering the best detection performance. KEY POINTS • Digital PET/CT provides superior detection efficacy over analog PET/CT in patients with lung adenocarcinoma featuring GGNs. • dN PET/CT can offer more help in the early detection of malignant GGN.
Collapse
Affiliation(s)
- Zhifeng Chen
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Er Road, Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Yali Long
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Er Road, Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Yuying Zhang
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Er Road, Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Bing Zhang
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Er Road, Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Qiao He
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Er Road, Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Xiangsong Zhang
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Er Road, Guangzhou, 510080, Guangdong Province, People's Republic of China.
| |
Collapse
|
5
|
Nye JA, Cooke CD. Accounting for residual activity in the estimate of myocardial blood flow with PET. J Nucl Cardiol 2022; 29:2271-2273. [PMID: 34918236 DOI: 10.1007/s12350-021-02873-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Jonathon A Nye
- Department of Radiology and Imaging Sciences, Emory School of Medicine, Emory University, 1841 Clifton Rd. NE, Atlanta, GA, 30329, USA.
| | - C David Cooke
- Department of Radiology and Imaging Sciences, Emory School of Medicine, Emory University, 1841 Clifton Rd. NE, Atlanta, GA, 30329, USA
| |
Collapse
|
6
|
Jackson IM, Lee SJ, Sowa AR, Rodnick ME, Bruton L, Clark M, Preshlock S, Rothley J, Rogers VE, Botti LE, Henderson BD, Hockley BG, Torres J, Raffel DM, Brooks AF, Frey KA, Kilbourn MR, Koeppe RA, Shao X, Scott PJH. Use of 55 PET radiotracers under approval of a Radioactive Drug Research Committee (RDRC). EJNMMI Radiopharm Chem 2020; 5:24. [PMID: 33175263 PMCID: PMC7658275 DOI: 10.1186/s41181-020-00110-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/19/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND In the US, EU and elsewhere, basic clinical research studies with positron emission tomography (PET) radiotracers that are generally recognized as safe and effective (GRASE) can often be conducted under institutional approval. For example, in the United States, such research is conducted under the oversight of a Radioactive Drug Research Committee (RDRC) as long as certain requirements are met. Firstly, the research must be for basic science and cannot be intended for immediate therapeutic or diagnostic purposes, or to determine the safety and effectiveness of the PET radiotracer. Secondly, the PET radiotracer must be generally recognized as safe and effective. Specifically, the mass dose to be administered must not cause any clinically detectable pharmacological effect in humans, and the radiation dose to be administered must be the smallest dose practical to perform the study and not exceed regulatory dose limits within a 1-year period. In our experience, the main barrier to using a PET radiotracer under RDRC approval is accessing the required information about mass and radioactive dosing. RESULTS The University of Michigan (UM) has a long history of using PET radiotracers in clinical research studies. Herein we provide dosing information for 55 radiotracers that will enable other PET Centers to use them under the approval of their own RDRC committees. CONCLUSIONS The data provided herein will streamline future RDRC approval, and facilitate further basic science investigation of 55 PET radiotracers that target functionally relevant biomarkers in high impact disease states.
Collapse
Affiliation(s)
- Isaac M Jackson
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI, 48109, USA
- Present Address: Stanford University, Stanford, CA, USA
| | - So Jeong Lee
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI, 48109, USA
- Present Address: Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexandra R Sowa
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI, 48109, USA
| | - Melissa E Rodnick
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI, 48109, USA
| | - Laura Bruton
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI, 48109, USA
| | - Mara Clark
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI, 48109, USA
| | - Sean Preshlock
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI, 48109, USA
| | - Jill Rothley
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI, 48109, USA
| | - Virginia E Rogers
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI, 48109, USA
| | - Leslie E Botti
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI, 48109, USA
| | - Bradford D Henderson
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI, 48109, USA
| | - Brian G Hockley
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI, 48109, USA
| | - Jovany Torres
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI, 48109, USA
| | - David M Raffel
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI, 48109, USA
| | - Allen F Brooks
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI, 48109, USA
| | - Kirk A Frey
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI, 48109, USA
| | - Michael R Kilbourn
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI, 48109, USA
| | - Robert A Koeppe
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI, 48109, USA
| | - Xia Shao
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI, 48109, USA
| | - Peter J H Scott
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
7
|
Chang Y, Donglan Y, Xinchong S, Ganhua L, Bing Z, Yao L, Rutong Z, Qiao H, Xiangsong Z. One-day protocol for 18F-FDG and 13N-ammonia PET/CT with uptake decoupling score in differentiating untreated low-grade glioma from inflammation. Rev Esp Med Nucl Imagen Mol 2020; 39:68-74. [PMID: 32005511 DOI: 10.1016/j.remn.2019.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/27/2019] [Accepted: 08/27/2019] [Indexed: 10/25/2022]
Abstract
PURPOSE Accurate identification of low-grade gliomas (LGGs; World Health Organization grades I and II) and their differentiation from brain inflammation lesions (BILs) remains difficult; however, it is essential for treatment. This study assessed whether a one-day protocol for voxel-wise 18F-FDG and 13N-ammonia PET/CT with uptake decoupling analysis could differentiate LGGs from BILs. MATERIALS AND METHODS Twenty-eight patients with LGGs and 16 patients with BILs underwent 18F-FDG and 13N-ammonia PET/CT on the same day before any type of therapy. The decoupling score and tumor-to-normal tissue (T/N) ratio of 18F-FDG and 13N-ammonia were calculated at each location. Student's t-test was used to compare values, and ROC curve analysis was used to establish a cut-off value for the T/N ratio and decoupling score. Area under the curve (AUC) was calculated to evaluate differential efficacy. RESULTS Significant differences were observed in 13N-ammonia T/N ratio (p=0.018) and decoupling score (p=0.003) between LGGs and BILs; however, the 18F-FDG T/N ratio did not show any differences (p=0.413). Optimal cut-off values for 18F-FDG T/N ratio, 13N-ammonia T/N ratio, and decoupling score were 0.73, 0.97, and 2.31, respectively, with corresponding AUCs of 0.48, 0.68, and 0.77. The respective sensitivity, specificity, and accuracy parameters using these cut-off values were 53.6%, 62.5%, and 56.8%, respectively, for 18F-FDG; 50.0%, 75.0%, and 59.1%, respectively, for 13N-ammonia; and 60.7%, 93.8%, and 72.7%, respectively, for decoupling score. CONCLUSIONS 18F-FDG/13N-ammonia uptake decoupling score can be used to discriminate between LGGs and BILs. Use of a decoupling map of these two tracers can improve visual analysis and diagnostic accuracy.
Collapse
Affiliation(s)
- Y Chang
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Y Donglan
- Department of Medical Engineering, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - S Xinchong
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - L Ganhua
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Z Bing
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - L Yao
- School of Data and Computer Science, Sun Yat-Sen University, Guangzhou, China
| | - Z Rutong
- School of Data and Computer Science, Sun Yat-Sen University, Guangzhou, China
| | - H Qiao
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Z Xiangsong
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|