1
|
Luo Y, Hua Y, Chen S, Qian X, Ruan H, Pan P, Chen H. Widely Untargeted Metabolomics Profiling Combined with Transcriptome Analysis Provides New Insight into Amino Acid Biosynthesis at Different Developmental Stages of Rubus Chingii Hu (Chinese Raspberry). J Med Food 2024; 27:993-1003. [PMID: 39254678 DOI: 10.1089/jmf.2024.k.0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
The composition and profile of amino acids in Rubus chingii (R. chingii) Hu serve as critical indicators of its nutritional quality. A comprehensive understanding of the amino acid metabolism within R. chingii is instrumental in the formulation and innovation of functional foods derived from this species. Utilizing advanced techniques such as wide-ranging untargeted metabolomics, transcriptome analysis, interaction network mapping, heat map analysis, and quantitative real-time PCR, we conducted a comprehensive assessment of the quality attributes across four distinct developmental stages of R. chingii. Our meticulous analysis uncovered a rich tapestry of 76 distinct amino acids and their derivatives within the developmental stages of R. chingii. The spectrum of essential amino acids was not only broad but also displayed a high degree of variety. Notably, leucine, lysine, and phenylalanine stood out as the most abundant amino acids, underscoring their significant presence throughout the growth cycle of R. chingii. The proportion of essential amino acids relative to the total amino acid content in R. chingii exhibited a notable trajectory of change throughout its developmental stages. It began with 30.92% in the immature green phase, advanced to 31.04% during the transition from green to yellow, peaked at 33.62% in the yellow to red stage, and then moderated to 30.43% in the full red phase. This pattern suggests a strategic modulation of amino acid composition, aligning with the evolving nutritional requirements and metabolic shifts as the fruit matures. Concurrent analysis of interaction networks and heat maps, alongside comprehensive profiling of amino acid metabolism and transcriptomic examination, was conducted to elucidate the intricate dynamics of cellular processes. The results showed that seven differentially expressed genes (DEGs) played important roles in amino acid metabolism, including PFK, BCAT1, TSB, ASA, ACO, TOM2AH3, and BCAT2. The expression patterns of seven DEGs conformed closely to the findings revealed by the preceding RNA-seq analysis. In this investigation, we elucidated the regulatory mechanisms underlying amino acid metabolism across the four distinct developmental stages of R. chingii through comprehensive amino acid profiling and transcriptomic analysis. These insights lay the groundwork for the development of novel functional food applications utilizing R. chingii.
Collapse
Affiliation(s)
- Yiyuan Luo
- College of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, Ningbo, China
| | - Yujiao Hua
- Department of Clinical Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Shaojun Chen
- College of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, Ningbo, China
| | - Xvwu Qian
- College of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, Ningbo, China
| | - Hongsheng Ruan
- College of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, Ningbo, China
| | - Ping Pan
- College of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, Ningbo, China
| | - Hongjiang Chen
- College of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, Ningbo, China
| |
Collapse
|
2
|
Relouw S, Dugbartey GJ, Sener A. Non-Invasive Imaging Modalities in Intravesical Murine Models of Bladder Cancer. Cancers (Basel) 2023; 15:cancers15082381. [PMID: 37190309 DOI: 10.3390/cancers15082381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Bladder cancer (BCa) is the sixth most prevalent cancer in men and seventeenth most prevalent cancer in women worldwide. Current treatment paradigms have limited therapeutic impact, suggesting an urgent need for the investigation of novel therapies. To best emulate the progression of human BCa, a pre-clinical intravesical murine model is required in conjunction with existing non-invasive imaging modalities to detect and evaluate cancer progression. Non-invasive imaging modalities reduce the number of required experimental models while allowing for longitudinal studies of novel therapies to investigate long-term efficacy. In this review, we discuss the individual and multi-modal use of non-invasive imaging modalities; bioluminescence imaging (BLI), micro-ultrasound imaging (MUI), magnetic resonance imaging (MRI), and positron emission tomography (PET) in BCa evaluation. We also provide an update on the potential and the future directions of imaging modalities in relation to intravesical murine models of BCa.
Collapse
Affiliation(s)
- Sydney Relouw
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Centre, Western University, London, ON N6A 5A5, Canada
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - George J Dugbartey
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Centre, Western University, London, ON N6A 5A5, Canada
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra P.O. Box LG 1181, Ghana
- Department of Surgery, Division of Urology, London Health Sciences Centre, London, ON N6A 5A5, Canada
- Multi-Organ Transplant Program, London Health Sciences Center, London, ON N6A 5A5, Canada
| | - Alp Sener
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Centre, Western University, London, ON N6A 5A5, Canada
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
- Department of Surgery, Division of Urology, London Health Sciences Centre, London, ON N6A 5A5, Canada
- Multi-Organ Transplant Program, London Health Sciences Center, London, ON N6A 5A5, Canada
| |
Collapse
|
3
|
Hoffmann C, Kolks N, Smets D, Haseloer A, Gröner B, Urusova EA, Endepols H, Neumaier F, Ruschewitz U, Klein A, Neumaier B, Zlatopolskiy BD. Next Generation Copper Mediators for the Efficient Production of 18 F-Labeled Aromatics. Chemistry 2023; 29:e202202965. [PMID: 36214204 PMCID: PMC10100267 DOI: 10.1002/chem.202202965] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Indexed: 11/07/2022]
Abstract
Cu-mediated radiofluorination is a versatile tool for the preparation of 18 F-labeled (hetero)aromatics. In this work, we systematically evaluated a series of complexes and identified several generally applicable mediators for highly efficient radiofluorination of aryl boronic and stannyl substrates. Utilization of these mediators in nBuOH/DMI or DMI significantly improved 18 F-labeling yields despite use of lower precursor amounts. Impressively, application of 2.5 μmol aryl boronic acids was sufficient to achieve 18 F-labeling yields of up to 75 %. The practicality of the novel mediators was demonstrated by efficient production of five PET-tracers and transfer of the method to an automated radiosynthesis module. In addition, (S)-3-[18 F]FPhe and 6-[18 F]FDOPA were prepared in activity yields of 23±1 % and 30±3 % using only 2.5 μmol of the corresponding boronic acid or trimethylstannyl precursor.
Collapse
Affiliation(s)
- Chris Hoffmann
- Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany.,Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428, Jülich, Germany
| | - Niklas Kolks
- Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany.,Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428, Jülich, Germany
| | - Daniel Smets
- Faculty of Mathematics and Natural Sciences, Department of Chemistry, Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939, Cologne, Germany
| | - Alexander Haseloer
- Faculty of Mathematics and Natural Sciences, Department of Chemistry, Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939, Cologne, Germany
| | - Benedikt Gröner
- Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany.,Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428, Jülich, Germany
| | - Elizaveta A Urusova
- Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany.,Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428, Jülich, Germany
| | - Heike Endepols
- Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany.,Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428, Jülich, Germany.,Faculty of Medicine and University Hospital Cologne, Department of Nuclear Medicine, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Felix Neumaier
- Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany.,Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428, Jülich, Germany
| | - Uwe Ruschewitz
- Faculty of Mathematics and Natural Sciences, Department of Chemistry, Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939, Cologne, Germany
| | - Axel Klein
- Faculty of Mathematics and Natural Sciences, Department of Chemistry, Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939, Cologne, Germany
| | - Bernd Neumaier
- Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany.,Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428, Jülich, Germany
| | - Boris D Zlatopolskiy
- Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany.,Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428, Jülich, Germany
| |
Collapse
|
5
|
Çakıcı ÖU, Dinçer S. The effect of amino acids on the bladder cycle: a concise review. Amino Acids 2021; 54:13-31. [PMID: 34853916 DOI: 10.1007/s00726-021-03113-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/25/2021] [Indexed: 11/26/2022]
Abstract
The human bladder maintains a cycle of filling, storing, and micturating throughout an individual's lifespan. The cycle relies on the ability of the bladder to expand without increasing the intravesical pressure, which is only possible with the controlled relaxation of well-complaint muscles and the congruously organized construction of the bladder wall. A competent bladder outlet, which functions in a synchronous fashion with the bladder, is also necessary for this cycle to be completed successfully without deterioration. In this paper, we aimed to review the contemporary physiological findings on bladder physiology and examine the effects of amino acids on clinical conditions affecting the bladder, with special emphasis on the available therapeutic evidence and possible future roles of the amino acids in the treatment of the bladder-related disorders.
Collapse
Affiliation(s)
- Özer Ural Çakıcı
- Attending Urologist, Private Practice, Ankara, Turkey.
- PhD Candidate in Physiology, Department of Physiology, Gazi University, Ankara, Turkey.
| | - Sibel Dinçer
- Professor in Physiology, Department of Physiology, Gazi University, Ankara, Turkey
| |
Collapse
|
6
|
Cheng X, Ma L. Enzymatic synthesis of fluorinated compounds. Appl Microbiol Biotechnol 2021; 105:8033-8058. [PMID: 34625820 PMCID: PMC8500828 DOI: 10.1007/s00253-021-11608-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 12/31/2022]
Abstract
Fluorinated compounds are widely used in the fields of molecular imaging, pharmaceuticals, and materials. Fluorinated natural products in nature are rare, and the introduction of fluorine atoms into organic compound molecules can give these compounds new functions and make them have better performance. Therefore, the synthesis of fluorides has attracted more and more attention from biologists and chemists. Even so, achieving selective fluorination is still a huge challenge under mild conditions. In this review, the research progress of enzymatic synthesis of fluorinated compounds is summarized since 2015, including cytochrome P450 enzymes, aldolases, fluoroacetyl coenzyme A thioesterases, lipases, transaminases, reductive aminases, purine nucleoside phosphorylases, polyketide synthases, fluoroacetate dehalogenases, tyrosine phenol-lyases, glycosidases, fluorinases, and multienzyme system. Of all enzyme-catalyzed synthesis methods, the direct formation of the C-F bond by fluorinase is the most effective and promising method. The structure and catalytic mechanism of fluorinase are introduced to understand fluorobiochemistry. Furthermore, the distribution, applications, and future development trends of fluorinated compounds are also outlined. Hopefully, this review will help researchers to understand the significance of enzymatic methods for the synthesis of fluorinated compounds and find or create excellent fluoride synthase in future research.Key points• Fluorinated compounds are distributed in plants and microorganisms, and are used in imaging, medicine, materials science.• Enzyme catalysis is essential for the synthesis of fluorinated compounds.• The loop structure of fluorinase is the key to forming the C-F bond.
Collapse
Affiliation(s)
- Xinkuan Cheng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Laboratory of Metabolic Control Fermentation Technology, College of Biotechnology, Tianjin University of Science & Technology, No. 29, Thirteenth Street, Binhai New District, Tianjin, 300457, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Laboratory of Metabolic Control Fermentation Technology, College of Biotechnology, Tianjin University of Science & Technology, No. 29, Thirteenth Street, Binhai New District, Tianjin, 300457, China.
| |
Collapse
|