1
|
Zhou Z, Huang Z, Tang Y, Zhu Y, Li J. Modulating membrane-bound enzyme activity with chemical stimuli. Eur J Med Chem 2024; 280:116964. [PMID: 39406113 DOI: 10.1016/j.ejmech.2024.116964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 11/25/2024]
Abstract
Membrane-bound enzymes play pivotal roles in various cellular processes, making their activity regulation essential for cellular homeostasis and signaling transduction. Given that dysregulation of membrane-bound enzymes involved in various disease, controlling enzyme activity offers valuable avenues for designing targeted therapies and novel pharmaceutical interventions. This review explores chemical stimuli-responsive strategies for modulating the activity of these enzymes, employing diverse stimuli such as small molecules, proteins, nucleic acids, and bifunctional molecules to either inhibit or enhance their catalytic function. We systematically delineate the mechanisms underlying enzyme activity regulation, including substrate binding site blockade, conformational changes, and local concentration of enzymes and substrates. Furthermore, based on some examples, we elucidate the binding modalities between stimuli and enzymes, along with potential modes of regulation, and discuss their potential medical applications and future prospects. This review underscores the significance of understanding and manipulating enzyme activity on the cell membrane for advancing biomedical research and therapeutic development.
Collapse
Affiliation(s)
- Zhilan Zhou
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China; Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Zening Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China
| | - Yiyuan Tang
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Yingdi Zhu
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Juan Li
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China.
| |
Collapse
|
2
|
Chen SY, Fiedler MK, Gronauer TF, Omelko O, von Wrisberg MK, Wang T, Schneider S, Sieber SA, Zacharias M. Unraveling the mechanism of small molecule induced activation of Staphylococcus aureus signal peptidase IB. Commun Biol 2024; 7:895. [PMID: 39043865 PMCID: PMC11266668 DOI: 10.1038/s42003-024-06575-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/11/2024] [Indexed: 07/25/2024] Open
Abstract
Staphylococcus aureus signal peptidase IB (SpsB) is an essential enzyme for protein secretion. While inhibition of its activity by small molecules is a well-precedented mechanism to kill bacteria, the mode of activation is however less understood. We here investigate the activation mechanism of a recently introduced activator, the antibiotic compound PK150, and demonstrate by combined experimental and Molecular Dynamics (MD) simulation studies a unique principle of enzyme stimulation. Mass spectrometric studies with an affinity-based probe of PK150 unravel the binding site of PK150 in SpsB which is used as a starting point for MD simulations. Our model shows the localization of the molecule in an allosteric pocket next to the active site which shields the catalytic dyad from excess water that destabilizes the catalytic geometry. This mechanism is validated by the placement of mutations aligning the binding pocket of PK150. While the mutants retain turnover of the SpsB substrate, no stimulation of activity is observed upon PK150 addition. Overall, our study elucidates a previously little investigated mechanism of enzyme activation and serves as a starting point for the development of future enzyme activators.
Collapse
Affiliation(s)
- Shu-Yu Chen
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, Zurich, 8093, Switzerland
- TUM School of Natural Sciences, Department Biosciences, Theoretical Biophysics (T38), Center for Functional Protein Assemblies (CPA), Technical University Munich (TUM), Ernst-Otto-Fischer Str. 8, Garching, 85748, Germany
| | - Michaela K Fiedler
- TUM School of Natural Sciences, Department Biosciences, Chair of Organic Chemistry II, Center for Functional Protein Assemblies (CPA), Technical University Munich (TUM), Ernst-Otto-Fischer Str. 8, Garching, 85748, Germany
| | - Thomas F Gronauer
- TUM School of Natural Sciences, Department Biosciences, Chair of Organic Chemistry II, Center for Functional Protein Assemblies (CPA), Technical University Munich (TUM), Ernst-Otto-Fischer Str. 8, Garching, 85748, Germany
| | - Olesia Omelko
- TUM School of Natural Sciences, Department Biosciences, Chair of Organic Chemistry II, Center for Functional Protein Assemblies (CPA), Technical University Munich (TUM), Ernst-Otto-Fischer Str. 8, Garching, 85748, Germany
| | - Marie-Kristin von Wrisberg
- Department of Chemistry, Ludwig-Maximilians University Munich (LMU), Butenandtstr. 5-13, Munich, 81377, Germany
| | - Tao Wang
- TUM School of Natural Sciences, Department Biosciences, Chair of Organic Chemistry II, Center for Functional Protein Assemblies (CPA), Technical University Munich (TUM), Ernst-Otto-Fischer Str. 8, Garching, 85748, Germany
| | - Sabine Schneider
- Department of Chemistry, Ludwig-Maximilians University Munich (LMU), Butenandtstr. 5-13, Munich, 81377, Germany
| | - Stephan A Sieber
- TUM School of Natural Sciences, Department Biosciences, Chair of Organic Chemistry II, Center for Functional Protein Assemblies (CPA), Technical University Munich (TUM), Ernst-Otto-Fischer Str. 8, Garching, 85748, Germany.
| | - Martin Zacharias
- TUM School of Natural Sciences, Department Biosciences, Theoretical Biophysics (T38), Center for Functional Protein Assemblies (CPA), Technical University Munich (TUM), Ernst-Otto-Fischer Str. 8, Garching, 85748, Germany.
| |
Collapse
|
3
|
Naz S, Liu P, Farooq U, Ma H. Insight into de-regulation of amino acid feedback inhibition: a focus on structure analysis method. Microb Cell Fact 2023; 22:161. [PMID: 37612753 PMCID: PMC10464499 DOI: 10.1186/s12934-023-02178-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/13/2023] [Indexed: 08/25/2023] Open
Abstract
Regulation of amino acid's biosynthetic pathway is of significant importance to maintain homeostasis and cell functions. Amino acids regulate their biosynthetic pathway by end-product feedback inhibition of enzymes catalyzing committed steps of a pathway. Discovery of new feedback resistant enzyme variants to enhance industrial production of amino acids is a key objective in industrial biotechnology. Deregulation of feedback inhibition has been achieved for various enzymes using in vitro and in silico mutagenesis techniques. As enzyme's function, its substrate binding capacity, catalysis activity, regulation and stability are dependent on its structural characteristics, here, we provide detailed structural analysis of all feedback sensitive enzyme targets in amino acid biosynthetic pathways. Current review summarizes information regarding structural characteristics of various enzyme targets and effect of mutations on their structures and functions especially in terms of deregulation of feedback inhibition. Furthermore, applicability of various experimental as well as computational mutagenesis techniques to accomplish feedback resistance has also been discussed in detail to have an insight into various aspects of research work reported in this particular field of study.
Collapse
Affiliation(s)
- Sadia Naz
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Pi Liu
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Umar Farooq
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Islamabad, 22060, Pakistan
| | - Hongwu Ma
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| |
Collapse
|
4
|
Hassell DS, Steingesser MG, Denney AS, Johnson CR, McMurray MA. Chemical rescue of mutant proteins in living Saccharomyces cerevisiae cells by naturally occurring small molecules. G3-GENES GENOMES GENETICS 2021; 11:6323229. [PMID: 34544143 PMCID: PMC8496222 DOI: 10.1093/g3journal/jkab252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/29/2021] [Indexed: 11/14/2022]
Abstract
Intracellular proteins function in a complex milieu wherein small molecules influence protein folding and act as essential cofactors for enzymatic reactions. Thus protein function depends not only on amino acid sequence but also on the concentrations of such molecules, which are subject to wide variation between organisms, metabolic states, and environmental conditions. We previously found evidence that exogenous guanidine reverses the phenotypes of specific budding yeast septin mutants by binding to a WT septin at the former site of an Arg side chain that was lost during fungal evolution. Here, we used a combination of targeted and unbiased approaches to look for other cases of "chemical rescue" by naturally occurring small molecules. We report in vivo rescue of hundreds of Saccharomyces cerevisiae mutants representing a variety of genes, including likely examples of Arg or Lys side chain replacement by the guanidinium ion. Failed rescue of targeted mutants highlight features required for rescue, as well as key differences between the in vitro and in vivo environments. Some non-Arg mutants rescued by guanidine likely result from "off-target" effects on specific cellular processes in WT cells. Molecules isosteric to guanidine and known to influence protein folding had a range of effects, from essentially none for urea, to rescue of a few mutants by DMSO. Strikingly, the osmolyte trimethylamine-N-oxide rescued ∼20% of the mutants we tested, likely reflecting combinations of direct and indirect effects on mutant protein function. Our findings illustrate the potential of natural small molecules as therapeutic interventions and drivers of evolution.
Collapse
Affiliation(s)
- Daniel S Hassell
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Marc G Steingesser
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ashley S Denney
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Courtney R Johnson
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael A McMurray
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
5
|
Potent Anticancer Effect of the Natural Steroidal Saponin Gracillin Is Produced by Inhibiting Glycolysis and Oxidative Phosphorylation-Mediated Bioenergetics. Cancers (Basel) 2020; 12:cancers12040913. [PMID: 32276500 PMCID: PMC7226187 DOI: 10.3390/cancers12040913] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 01/19/2023] Open
Abstract
Metabolic rewiring to utilize aerobic glycolysis is a hallmark of cancer. However, recent findings suggest the role of mitochondria in energy generation in cancer cells and the metabolic switch to oxidative phosphorylation (OXPHOS) in response to the blockade of glycolysis. We previously demonstrated that the antitumor effect of gracillin occurs through the inhibition of mitochondrial complex II-mediated energy production. Here, we investigated the potential of gracillin as an anticancer agent targeting both glycolysis and OXPHOS in breast and lung cancer cells. Along with the reduction in adenosine triphosphate (ATP) production, gracillin markedly suppresses the production of several glycolysis-associated metabolites. A docking analysis and enzyme assay suggested phosphoglycerate kinase 1 (PGK1) is a potential target for the antiglycolytic effect of gracillin. Gracillin reduced the viability and colony formation ability of breast cancer cells by inducing apoptosis. Gracillin displayed efficacious antitumor effects in mice bearing breast cancer cell line or breast cancer patient-derived tumor xenografts with no overt changes in body weight. An analysis of publicly available datasets further suggested that PGK1 expression is associated with metastasis status and poor prognosis in patients with breast cancer. These results suggest that gracillin is a natural anticancer agent that inhibits both glycolysis and mitochondria-mediated bioenergetics.
Collapse
|
6
|
Plaman BA, Chan WC, Bishop AC. Chemical activation of divergent protein tyrosine phosphatase domains with cyanine-based biarsenicals. Sci Rep 2019; 9:16148. [PMID: 31695052 PMCID: PMC6834593 DOI: 10.1038/s41598-019-52002-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/11/2019] [Indexed: 12/28/2022] Open
Abstract
Strategies for the direct chemical activation of specific signaling proteins could provide powerful tools for interrogating cellular signal transduction. However, targeted protein activation is chemically challenging, and few broadly applicable activation strategies for signaling enzymes have been developed. Here we report that classical protein tyrosine phosphatase (PTP) domains from multiple subfamilies can be systematically sensitized to target-specific activation by the cyanine-based biarsenical compounds AsCy3 and AsCy5. Engineering of the activatable PTPs (actPTPs) is achieved by the introduction of three cysteine residues within a conserved loop of the PTP domain, and the positions of the sensitizing mutations are readily identifiable from primary sequence alignments. In the current study we have generated and characterized actPTP domains from three different subfamilies of both receptor and non-receptor PTPs. Biarsenical-induced stimulation of the actPTPs is rapid and dose-dependent, and is operative with both purified enzymes and complex proteomic mixtures. Our results suggest that a substantial fraction of the classical PTP family will be compatible with the act-engineering approach, which provides a novel chemical-biological tool for the control of PTP activity and the study of PTP function.
Collapse
Affiliation(s)
- Bailey A Plaman
- Amherst College, Department of Chemistry, Amherst, Massachusetts, 01002, USA
| | - Wai Cheung Chan
- Amherst College, Department of Chemistry, Amherst, Massachusetts, 01002, USA.,Dana-Farber Cancer Institute, Department of Cancer Biology, Boston, MA, 02215, USA
| | - Anthony C Bishop
- Amherst College, Department of Chemistry, Amherst, Massachusetts, 01002, USA.
| |
Collapse
|
7
|
Astl L, Verkhivker GM. Data-driven computational analysis of allosteric proteins by exploring protein dynamics, residue coevolution and residue interaction networks. Biochim Biophys Acta Gen Subj 2019:S0304-4165(19)30179-5. [PMID: 31330173 DOI: 10.1016/j.bbagen.2019.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Computational studies of allosteric interactions have witnessed a recent renaissance fueled by the growing interest in modeling of the complex molecular assemblies and biological networks. Allosteric interactions in protein structures allow for molecular communication in signal transduction networks. METHODS In this work, we performed a large scale comprehensive and multi-faceted analysis of >300 diverse allosteric proteins and complexes with allosteric modulators. By modeling and exploring coarse-grained dynamics, residue coevolution, and residue interaction networks for allosteric proteins, we have determined unifying molecular signatures shared by allosteric systems. RESULTS The results of this study have suggested that allosteric inhibitors and allosteric activators may differentially affect global dynamics and network organization of protein systems, leading to diverse allosteric mechanisms. By using structural and functional data on protein kinases, we present a detailed case study that that included atomic-level analysis of coevolutionary networks in kinases bound with allosteric inhibitors and activators. CONCLUSIONS We have found that coevolutionary networks can form direct communication pathways connecting functional regions and can recapitulate key regulatory sites and interactions responsible for allosteric signaling in the studied protein systems. The results of this computational investigation are compared with the experimental studies and reveal molecular signatures of known regulatory hotspots in protein kinases. GENERAL SIGNIFICANCE This study has shown that allosteric inhibitors and allosteric activators can have a different effect on residue interaction networks and can exploit distinct regulatory mechanisms, which could open up opportunities for probing allostery and new drug combinations with broad range of activities.
Collapse
Affiliation(s)
- Lindy Astl
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, United States of America
| | - Gennady M Verkhivker
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, United States of America; Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States of America.
| |
Collapse
|
8
|
Astl L, Tse A, Verkhivker GM. Interrogating Regulatory Mechanisms in Signaling Proteins by Allosteric Inhibitors and Activators: A Dynamic View Through the Lens of Residue Interaction Networks. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1163:187-223. [DOI: 10.1007/978-981-13-8719-7_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Dadová J, Wu KJ, Isenegger PG, Errey JC, Bernardes GL, Chalker JM, Raich L, Rovira C, Davis BG. Precise Probing of Residue Roles by Post-Translational β,γ-C,N Aza-Michael Mutagenesis in Enzyme Active Sites. ACS CENTRAL SCIENCE 2017; 3:1168-1173. [PMID: 29202018 PMCID: PMC5704290 DOI: 10.1021/acscentsci.7b00341] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Indexed: 06/07/2023]
Abstract
Biomimicry valuably allows the understanding of the essential chemical components required to recapitulate biological function, yet direct strategies for evaluating the roles of amino acids in proteins can be limited by access to suitable, subtly-altered unnatural variants. Here we describe a strategy for dissecting the role of histidine residues in enzyme active sites using unprecedented, chemical, post-translational side-chain-β,γ C-N bond formation. Installation of dehydroalanine (as a "tag") allowed the testing of nitrogen conjugate nucleophiles in "aza-Michael"-1,4-additions (to "modify"). This allowed the creation of a regioisomer of His (iso-His, Hisiso) linked instead through its pros-Nπ atom rather than naturally linked via C4, as well as an aza-altered variant aza-Hisiso. The site-selective generation of these unnatural amino acids was successfully applied to probe the contributing roles (e.g., size, H-bonding) of His residues toward activity in the model enzymes subtilisin protease from Bacillus lentus and Mycobacterium tuberculosis pantothenate synthetase.
Collapse
Affiliation(s)
- Jitka Dadová
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Kuan-Jung Wu
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Patrick G. Isenegger
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - James C. Errey
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Gonçalo
J. L. Bernardes
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Justin M. Chalker
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Lluís Raich
- Departament
de Química Inorgànica i Orgànica (secció
de Química Orgànica) & Institut de Química
Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Carme Rovira
- Departament
de Química Inorgànica i Orgànica (secció
de Química Orgànica) & Institut de Química
Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
- Institució
Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys, 23, 08010 Barcelona, Spain
| | - Benjamin G. Davis
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| |
Collapse
|
10
|
Antibacterial photosensitization through activation of coproporphyrinogen oxidase. Proc Natl Acad Sci U S A 2017; 114:E6652-E6659. [PMID: 28739897 DOI: 10.1073/pnas.1700469114] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Gram-positive bacteria cause the majority of skin and soft tissue infections (SSTIs), resulting in the most common reason for clinic visits in the United States. Recently, it was discovered that Gram-positive pathogens use a unique heme biosynthesis pathway, which implicates this pathway as a target for development of antibacterial therapies. We report here the identification of a small-molecule activator of coproporphyrinogen oxidase (CgoX) from Gram-positive bacteria, an enzyme essential for heme biosynthesis. Activation of CgoX induces accumulation of coproporphyrin III and leads to photosensitization of Gram-positive pathogens. In combination with light, CgoX activation reduces bacterial burden in murine models of SSTI. Thus, small-molecule activation of CgoX represents an effective strategy for the development of light-based antimicrobial therapies.
Collapse
|
11
|
Rizk SS, Mukherjee S, Koide A, Koide S, Kossiakoff AA. Targeted rescue of cancer-associated IDH1 mutant activity using an engineered synthetic antibody. Sci Rep 2017; 7:556. [PMID: 28373671 PMCID: PMC5429742 DOI: 10.1038/s41598-017-00728-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 03/10/2017] [Indexed: 01/01/2023] Open
Abstract
We have utilized a high-diversity phage display library to engineer antibody fragments (Fabs) that can modulate the activity of the enzyme isocitrate dehydrogenase 1 (IDH1). We show that a conformation-specific Fab can reactivate an IDH1 mutant associated with brain tumors. The results show that this strategy is a first step towards developing "activator drugs" for a large number of genetic disorders where mutations have disrupted protein function.
Collapse
Affiliation(s)
- Shahir S Rizk
- Department of Chemistry and Biochemistry, Indiana University South Bend, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, South Bend, Indiana, USA.
| | - Somnath Mukherjee
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA
| | - Akiko Koide
- Perlmutter Cancer Cener, New York University Langone Medical Center, New York, USA.,Department of Medicine, New York University School of Medicine, New York, USA
| | - Shohei Koide
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA.,Perlmutter Cancer Cener, New York University Langone Medical Center, New York, USA.,Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, USA
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
12
|
Ge Y, Fan X, Chen PR. A genetically encoded multifunctional unnatural amino acid for versatile protein manipulations in living cells. Chem Sci 2016; 7:7055-7060. [PMID: 28451140 PMCID: PMC5355830 DOI: 10.1039/c6sc02615j] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/01/2016] [Indexed: 01/20/2023] Open
Abstract
The genetic code expansion strategy allowed incorporation of unnatural amino acids (UAAs) bearing diverse functional groups into proteins, providing a powerful toolkit for protein manipulation in living cells. We report a multifunctional UAA, Nε-p-azidobenzyloxycarbonyl lysine (PABK), that possesses a panel of unique properties capable of fulfilling various protein manipulation purposes. In addition to being used as a bioorthogonal ligation handle, an infrared probe and a photo-affinity reagent, PABK was shown to be chemically decaged by trans-cyclooctenols via a strain-promoted 1,3-dipolar cycloaddition, which provides a new bioorthogonal cleavage strategy for intracellular protein activation. The biocompatibility and efficiency of this method were demonstrated by decaging of a PABK-caged firefly luciferase under living conditions. We further extended this method to chemically rescue a bacterial toxin OspF inside mammalian host cells.
Collapse
Affiliation(s)
- Yun Ge
- Beijing National Laboratory for Molecular Sciences , Synthetic and Functional Biomolecules Center , Department of Chemical Biology , College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China .
| | - Xinyuan Fan
- Beijing National Laboratory for Molecular Sciences , Synthetic and Functional Biomolecules Center , Department of Chemical Biology , College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China .
- Peking-Tsinghua Center for Life Sciences , Peking University , Beijing 100871 , China
| | - Peng R Chen
- Beijing National Laboratory for Molecular Sciences , Synthetic and Functional Biomolecules Center , Department of Chemical Biology , College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China .
- Peking-Tsinghua Center for Life Sciences , Peking University , Beijing 100871 , China
| |
Collapse
|
13
|
High throughput cell-based assay for identification of glycolate oxidase inhibitors as a potential treatment for Primary Hyperoxaluria Type 1. Sci Rep 2016; 6:34060. [PMID: 27670739 PMCID: PMC5037430 DOI: 10.1038/srep34060] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 09/05/2016] [Indexed: 12/11/2022] Open
Abstract
Glycolate oxidase (GO) and alanine:glyoxylate aminotransferase (AGT) are both involved in the peroxisomal glyoxylate pathway. Deficiency in AGT function causes the accumulation of intracellular oxalate and the primary hyperoxaluria type 1 (PH1). AGT enhancers or GO inhibitors may restore the abnormal peroxisomal glyoxylate pathway in PH1 patients. With stably transformed cells which mimic the glyoxylate metabolic pathway, we developed an indirect glycolate cytotoxicity assay in a 1,536-well plate format for high throughput screening. This assay can be used to identify compounds that reduce indirect glycolate-induced cytotoxicity by either enhancing AGT activity or inhibiting GO. A pilot screen of 4,096 known compounds identified two membrane permeable GO inhibitors: dichromate salt and colistimethate. We also developed a GO enzyme assay using the hydrogen peroxide-Amplex red reporter system. The IC50 values of potassium dichromate, sodium dichromate, and colistimethate sodium were 0.096, 0.108, and 2.3 μM in the GO enzyme assay, respectively. Further enzyme kinetic study revealed that both types of compounds inhibit GO activity by the mixed linear inhibition. Our results demonstrate that the cell-based assay and GO enzyme assay developed in this study are useful for further screening of large compound libraries for drug development to treat PH1.
Collapse
|
14
|
Chio CM, Cheng KW, Bishop AC. Direct Chemical Activation of a Rationally Engineered Signaling Enzyme. Chembiochem 2015; 16:1735-9. [PMID: 26063205 DOI: 10.1002/cbic.201500245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Indexed: 11/08/2022]
Abstract
Few chemical strategies for activating enzymes have been developed. Here we show that a biarsenical compound (FlAsH) can directly activate a rationally engineered protein tyrosine phosphatase (Shp2 PTP) by disrupting autoinhibitory interactions between Shp2's N-terminal SH2 domain and its PTP domain. We found that introducing a tricysteine motif at a loop of Shp2's N-SH2 domain confers affinity for FlAsH; binding of FlAsH to the cysteine-enriched loop relieves Shp2's inhibitory interdomain interaction and substantially increases the enzyme's PTP activity. Activation of engineered Shp2 is substrate independent and is observed in the contexts of both purified enzyme and complex proteomes. A chemical means for activating Shp2 could be useful for investigating its roles in signaling and oncogenesis, and the loop-targeting strategy described herein could provide a blueprint for the development of target-specific activators of other autoinhibited enzymes.
Collapse
Affiliation(s)
- Cynthia M Chio
- Department of Chemistry, Amherst College, Amherst, MA 01002 (USA)
| | - Karen W Cheng
- Department of Chemistry, Amherst College, Amherst, MA 01002 (USA)
| | - Anthony C Bishop
- Department of Chemistry, Amherst College, Amherst, MA 01002 (USA).
| |
Collapse
|
15
|
Patta PC, Martinelli LKB, Rotta M, Abbadi BL, Santos DS, Basso LA. Mode of action of recombinant hypoxanthine–guanine phosphoribosyltransferase from Mycobacterium tuberculosis. RSC Adv 2015. [DOI: 10.1039/c5ra14918e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Homodimeric Mycobacterium tuberculosis HGPRT follows a sequential compulsory ordered enzyme mechanism.
Collapse
Affiliation(s)
- Paulo C. Patta
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF)
- Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB)
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
- Porto Alegre
- Brazil
| | - Leonardo K. B. Martinelli
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF)
- Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB)
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
- Porto Alegre
- Brazil
| | - Mariane Rotta
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF)
- Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB)
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
- Porto Alegre
- Brazil
| | - Bruno L. Abbadi
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF)
- Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB)
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
- Porto Alegre
- Brazil
| | - Diogenes S. Santos
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF)
- Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB)
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
- Porto Alegre
- Brazil
| | - Luiz A. Basso
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF)
- Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB)
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
- Porto Alegre
- Brazil
| |
Collapse
|
16
|
Trottier A, Maltais R, Poirier D. Identification of a first enzymatic activator of a 17β-hydroxysteroid dehydrogenase. ACS Chem Biol 2014; 9:1668-73. [PMID: 24910887 DOI: 10.1021/cb500109e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Small molecule activators that directly modulate the activity of an enzyme are uncommon entities, and such activators had never yet been identified for any 17β-hydroxysteroid dehydrogenase (17β-HSD). We hereby report the fortuitous discovery of a steroid derivative that caused an up to 3-fold increase in the activity of 17β-HSD12. The stimulation of estrone to estradiol conversion has been characterized in intact and homogenized stably transfected HEK-293 cells and has also been observed in T47D breast cancer cells. Structure-activity relationships closely linked to the nature of the substituent on the [1,3]oxazinan-2-one ring of an estradiol derivative emerged from this study and may help in the identification of a previously unsuspected endogenous activation of 17β-HSD12. This activator will therefore be a useful tool to study this relatively unknown enzyme as well as the possible activation of other 17β-HSD family members.
Collapse
Affiliation(s)
- Alexandre Trottier
- Laboratory
of Medicinal Chemistry,
Endocrinology and Nephrology Unit, CHU de Québec (CHUL, T4),
and Faculty of Medicine, Laval University, Québec, Québec G1V 4G2, Canada
| | - René Maltais
- Laboratory
of Medicinal Chemistry,
Endocrinology and Nephrology Unit, CHU de Québec (CHUL, T4),
and Faculty of Medicine, Laval University, Québec, Québec G1V 4G2, Canada
| | - Donald Poirier
- Laboratory
of Medicinal Chemistry,
Endocrinology and Nephrology Unit, CHU de Québec (CHUL, T4),
and Faculty of Medicine, Laval University, Québec, Québec G1V 4G2, Canada
| |
Collapse
|
17
|
Chen Y, Tang H, Seibel W, Papoian R, Oh K, Li X, Zhang J, Golczak M, Palczewski K, Kiser PD. Identification and characterization of novel inhibitors of Mammalian aspartyl aminopeptidase. Mol Pharmacol 2014; 86:231-42. [PMID: 24913940 PMCID: PMC4127928 DOI: 10.1124/mol.114.093070] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 06/09/2014] [Indexed: 11/22/2022] Open
Abstract
Aspartyl aminopeptidase (DNPEP) has been implicated in the control of angiotensin signaling and endosome trafficking, but its precise biologic roles remain incompletely defined. We performed a high-throughput screen of ∼25,000 small molecules to identify inhibitors of DNPEP for use as tools to study its biologic functions. Twenty-three confirmed hits inhibited DNPEP-catalyzed hydrolysis of angiotensin II with micromolar potency. A counter screen against glutamyl aminopeptidase (ENPEP), an enzyme with substrate specificity similar to that of DNPEP, identified eight DNPEP-selective inhibitors. Structure-activity relationships and modeling studies revealed structural features common to the identified inhibitors, including a metal-chelating group and a charged or polar moiety that could interact with portions of the enzyme active site. The compounds identified in this study should be valuable tools for elucidating DNPEP physiology.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio (Y.C., K.O., X.L., J.Z., M.G., K.P., P.D.K.); and Drug Discovery Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio (H.T., W.S., R.P.)
| | - Hong Tang
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio (Y.C., K.O., X.L., J.Z., M.G., K.P., P.D.K.); and Drug Discovery Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio (H.T., W.S., R.P.)
| | - William Seibel
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio (Y.C., K.O., X.L., J.Z., M.G., K.P., P.D.K.); and Drug Discovery Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio (H.T., W.S., R.P.)
| | - Ruben Papoian
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio (Y.C., K.O., X.L., J.Z., M.G., K.P., P.D.K.); and Drug Discovery Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio (H.T., W.S., R.P.)
| | - Ki Oh
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio (Y.C., K.O., X.L., J.Z., M.G., K.P., P.D.K.); and Drug Discovery Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio (H.T., W.S., R.P.)
| | - Xiaoyu Li
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio (Y.C., K.O., X.L., J.Z., M.G., K.P., P.D.K.); and Drug Discovery Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio (H.T., W.S., R.P.)
| | - Jianye Zhang
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio (Y.C., K.O., X.L., J.Z., M.G., K.P., P.D.K.); and Drug Discovery Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio (H.T., W.S., R.P.)
| | - Marcin Golczak
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio (Y.C., K.O., X.L., J.Z., M.G., K.P., P.D.K.); and Drug Discovery Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio (H.T., W.S., R.P.)
| | - Krzysztof Palczewski
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio (Y.C., K.O., X.L., J.Z., M.G., K.P., P.D.K.); and Drug Discovery Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio (H.T., W.S., R.P.)
| | - Philip D Kiser
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio (Y.C., K.O., X.L., J.Z., M.G., K.P., P.D.K.); and Drug Discovery Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio (H.T., W.S., R.P.)
| |
Collapse
|
18
|
Palladium brings proteins to life. Nat Chem Biol 2014; 10:328-30. [DOI: 10.1038/nchembio.1507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Li J, Yu J, Zhao J, Wang J, Zheng S, Lin S, Chen L, Yang M, Jia S, Zhang X, Chen PR. Palladium-triggered deprotection chemistry for protein activation in living cells. Nat Chem 2014; 6:352-61. [DOI: 10.1038/nchem.1887] [Citation(s) in RCA: 289] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 02/05/2014] [Indexed: 02/07/2023]
|
20
|
Moreau M, Westlake T, Zampogna G, Popescu G, Tian M, Noutsos C, Popescu S. The Arabidopsis oligopeptidases TOP1 and TOP2 are salicylic acid targets that modulate SA-mediated signaling and the immune response. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:603-14. [PMID: 24004003 DOI: 10.1111/tpj.12320] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 08/15/2013] [Accepted: 08/28/2013] [Indexed: 05/03/2023]
Abstract
Salicylic acid (SA) is a small phenolic molecule with hormonal properties, and is an essential component of the immune response. SA exerts its functions by interacting with protein targets; however, the specific cellular components modulated by SA and critical for immune signal transduction are largely unknown. To uncover cellular activities targeted by SA, we probed Arabidopsis protein microarrays with a functional analog of SA. We demonstrate that thimet oligopeptidases (TOPs) constitute a class of SA-binding enzymes. Biochemical evidence demonstrated that SA interacts with TOPs and inhibits their peptidase activities to various degrees both in vitro and in plant extracts. Functional characterization of mutants with altered TOP expression indicated that TOP1 and TOP2 mediate SA-dependent signaling and are necessary for the immune response to avirulent pathogens. Our results support a model whereby TOP1 and TOP2 act in separate pathways to modulate SA-mediated cellular processes.
Collapse
Affiliation(s)
- Magali Moreau
- The Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY, 14850, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Wink PL, Sanchez Quitian ZA, Rosado LA, Rodrigues VDS, Petersen GO, Lorenzini DM, Lipinski-Paes T, Saraiva Macedo Timmers LF, de Souza ON, Basso LA, Santos DS. Biochemical characterization of recombinant nucleoside hydrolase from Mycobacterium tuberculosis H37Rv. Arch Biochem Biophys 2013; 538:80-94. [DOI: 10.1016/j.abb.2013.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/13/2013] [Accepted: 08/17/2013] [Indexed: 11/25/2022]
|
22
|
Bitok JK, Meyers CF. 2C-Methyl-d-erythritol 4-phosphate enhances and sustains cyclodiphosphate synthase IspF activity. ACS Chem Biol 2012; 7:1702-10. [PMID: 22839733 DOI: 10.1021/cb300243w] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
There is significant progress toward understanding catalysis throughout the essential MEP pathway to isoprenoids in human pathogens; however, little is known about pathway regulation. The present study begins by testing the hypothesis that isoprenoid biosynthesis is regulated via feedback inhibition of the fifth enzyme cyclodiphosphate synthase IspF by downstream isoprenoid diphosphates. Here, we demonstrate recombinant E. coli IspF is not inhibited by downstream metabolites isopentenyl diphosphate (IDP), dimethylallyl diphosphate (DMADP), geranyl diphosphate (GDP), and farnesyl diphosphate (FDP) under standard assay conditions. However, 2C-methyl-d-erythritol 4-phosphate (MEP), the product of reductoisomerase IspC and first committed MEP pathway intermediate, activates and sustains this enhanced IspF activity, and the IspF-MEP complex is inhibited by FDP. We further show that the methylerythritol scaffold itself, which is unique to this pathway, drives the activation and stabilization of active IspF. Our results suggest a novel feed-forward regulatory mechanism for 2C-methyl-d-erythritol 2,4-cyclodiphosphate (MEcDP) production and support an isoprenoid biosynthesis regulatory mechanism via feedback inhibition of the IspF-MEP complex by FDP. The results have important implications for development of inhibitors against the IspF-MEP complex, which may be the physiologically relevant form of the enzyme.
Collapse
Affiliation(s)
- J. Kipchirchir Bitok
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore,
Maryland 21205, United States
| | - Caren Freel Meyers
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore,
Maryland 21205, United States
| |
Collapse
|
23
|
Martinelli LKB, Ducati RG, Rosado LA, Breda A, Selbach BP, Santos DS, Basso LA. Recombinant Escherichia coli GMP reductase: kinetic, catalytic and chemical mechanisms, and thermodynamics of enzyme-ligand binary complex formation. MOLECULAR BIOSYSTEMS 2011; 7:1289-305. [PMID: 21298178 DOI: 10.1039/c0mb00245c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Guanosine monophosphate (GMP) reductase catalyzes the reductive deamination of GMP to inosine monophosphate (IMP). GMP reductase plays an important role in the conversion of nucleoside and nucleotide derivatives of guanine to adenine nucleotides. In addition, as a member of the purine salvage pathway, it also participates in the reutilization of free intracellular bases. Here we present cloning, expression and purification of Escherichia coli guaC-encoded GMP reductase to determine its kinetic mechanism, as well as chemical and thermodynamic features of this reaction. Initial velocity studies and isothermal titration calorimetry demonstrated that GMP reductase follows an ordered bi-bi kinetic mechanism, in which GMP binds first to the enzyme followed by NADPH binding, and NADP(+) dissociates first followed by IMP release. The isothermal titration calorimetry also showed that GMP and IMP binding are thermodynamically favorable processes. The pH-rate profiles showed groups with apparent pK values of 6.6 and 9.6 involved in catalysis, and pK values of 7.1 and 8.6 important to GMP binding, and a pK value of 6.2 important for NADPH binding. Primary deuterium kinetic isotope effects demonstrated that hydride transfer contributes to the rate-limiting step, whereas solvent kinetic isotope effects arise from a single protonic site that plays a modest role in catalysis. Multiple isotope effects suggest that protonation and hydride transfer steps take place in the same transition state, lending support to a concerted mechanism. Pre-steady-state kinetic data suggest that product release does not contribute to the rate-limiting step of the reaction catalyzed by E. coli GMP reductase.
Collapse
Affiliation(s)
- Leonardo Krás Borges Martinelli
- Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Pontifícia Universidade Católica do Rio Grande do Sul, 6681/92-A Av Ipiranga, 90619-900 Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Chen VL, Bishop AC. Chemical rescue of protein tyrosine phosphatase activity. Chem Commun (Camb) 2009; 46:637-9. [PMID: 20062887 DOI: 10.1039/b919815f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report that the activity of a rationally engineered protein tyrosine phosphatase (PTP) mutant can be fully rescued by the addition of the biarsenical fluorescein derivative FlAsH, a compound that does not affect the activity of wild-type PTPs.
Collapse
Affiliation(s)
- Vincent L Chen
- Amherst College, Department of Chemistry, Amherst, MA, USA
| | | |
Collapse
|