1
|
Kong L, Jin X. Dysregulation of deubiquitination in breast cancer. Gene 2024; 902:148175. [PMID: 38242375 DOI: 10.1016/j.gene.2024.148175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/04/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Breast cancer (BC) is a highly frequent malignant tumor that poses a serious threat to women's health and has different molecular subtypes, histological subtypes, and biological features, which act by activating oncogenic factors and suppressing cancer inhibitors. The ubiquitin-proteasome system (UPS) is the main process contributing to protein degradation, and deubiquitinases (DUBs) are reverse enzymes that counteract this process. There is growing evidence that dysregulation of DUBs is involved in the occurrence of BC. Herein, we review recent research findings in BC-associated DUBs, describe their nature, classification, and functions, and discuss the potential mechanisms of DUB-related dysregulation in BC. Furthermore, we present the successful treatment of malignant cancer with DUB inhibitors, as well as analyzing the status of targeting aberrant DUBs in BC.
Collapse
Affiliation(s)
- Lili Kong
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo 315211, Zhejiang, China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo 315211, Zhejiang, China.
| |
Collapse
|
2
|
Luo Y, He J, Yang C, Orange M, Ren X, Blair N, Tan T, Yang JM, Zhu H. UCH-L1 promotes invasion of breast cancer cells through activating Akt signaling pathway. J Cell Biochem 2017. [PMID: 28636190 DOI: 10.1002/jcb.26232] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
As a de-ubiquitin enzyme, ubiquitin C-terminal hydrolase (UCH)-L1 has been shown to be overexpressed in several human cancers. However, the function of UCH-L1 in invasion of breast cancers is still unclear. Here we report that the expression of UCH-L1 is significantly higher in cancer cells with higher invasive ability. While ectopic UCH-L1 expression failed to alter cell proliferation in MCF-7 cells, it caused a significant upregulation of cellular invasion. Furthermore, siRNA mediated knockdown of UCH-L1 led to suppression of invasion in UCH-L1 overexpressing MCF-7 cells. In order to identify molecular mechanisms underlying these observations, a novel in vitro proximity-dependent biotin identification method was developed by fusing UCH-L1 protein with a bacterial biotin ligase (Escherichia coli BirA R118G, BioID). Streptavidin magnetic beads pulldown assay revealed that UCH-L1 can interact with Akt in MCF-7 cells. Pulldown assay with His tagged recombinant UCH-L1 protein and cell lysate from MCF-7 cells further demonstrated that UCH-L1 preferentially binds to Akt2 for Akt activation. Finally, we demonstrated that overexpression of UCH-L1 led to activation of Akt as evidenced by upregulation of phosphorylated Akt. Thus, these findings demonstrated that UCH-L1 promotes invasion of breast cancer cells and might serve as a potential therapeutic target for treatment of human patients with breast cancers.
Collapse
Affiliation(s)
- Yanhong Luo
- Children's Hospital of Chongqing Medical University, Chongqing, P.R.China
| | - Jianfeng He
- Children's Hospital of Chongqing Medical University, Chongqing, P.R.China
| | - Chunlin Yang
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Matthew Orange
- Department of Physical Education and Human Performance, Central Connecticut State University, New Britain, Connecticut
| | - Xingcong Ren
- Department of Pharmacology, The Penn State Hershey Cancer Institute, College of Medicine and Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, Pennsylvania
| | - Nick Blair
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Tao Tan
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Jin-Ming Yang
- Department of Pharmacology, The Penn State Hershey Cancer Institute, College of Medicine and Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, Pennsylvania
| | - Hua Zhu
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
3
|
Wang Y, Yin D, Xu C, Wang K, Zheng L, Zhang Y. Roxarsone induces angiogenesis via PI3K/Akt signaling. Cell Biosci 2016; 6:54. [PMID: 27708768 PMCID: PMC5039879 DOI: 10.1186/s13578-016-0119-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/20/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND 3-Nitro-4-hydroxy phenyl arsenic acid, roxarsone, is widely used as an organic arsenic feed additive for livestock and poultry, which may increase the level of arsenic in the environment and the risk of exposure to arsenic in human. Little information is focused on the angiogenesis roxarsone-induced and its mechanism at present. This paper aims to study the role of PI3K/Akt signaling in roxarsone-induced angiogenesis in rat vascular endothelial cells and a mouse B16-F10 melanoma xenograft model. RESULTS The results showed that treatment with 0.1-10.0 µmol/L roxarsone resulted in an increase in the OD rate in the MTT assay, the number of BrdU-positive cells in the proliferation assay, the migration distance in the scratch test and the number of meshes in tube formation assay. Further, treatment with 1.0 µmol/L roxarsone was associated with significantly higher phosphorylation of PI3K/Akt and expression of VEGF than the control treatment. The PI3K inhibitor was found to significantly combat the effects of 1.0 µmol/L roxarsone. Furthermore, roxarsone treatment was observed to increase the weight and volume of B16-F10 xenografts and VEGF expression and PI3K/Akt phosphorylation in a dose-dependent manner, with the 25 mg/kg dose having significant effects. CONCLUSIONS These results demonstrate that roxarsone has the ability to promote growth and tube formation in vascular endothelial cells and the growth of mouse B16-F10 xenografts. Further, the findings also indicate that PI3K/Akt signaling plays a regulatory role in roxarsone-induced angiogenesis in vivo and in vitro.
Collapse
Affiliation(s)
- Yujing Wang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Yangzhou University, 12# Wenhui East Road, Yangzhou, 225009 Jiangsu China
| | - Donglai Yin
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Yangzhou University, 12# Wenhui East Road, Yangzhou, 225009 Jiangsu China
| | - Chao Xu
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu China
| | - Kai Wang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Yangzhou University, 12# Wenhui East Road, Yangzhou, 225009 Jiangsu China
| | - Lingmin Zheng
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Yangzhou University, 12# Wenhui East Road, Yangzhou, 225009 Jiangsu China
| | - Yumei Zhang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Yangzhou University, 12# Wenhui East Road, Yangzhou, 225009 Jiangsu China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
4
|
Zhu Z, Yu W, Fu X, Sun M, Wei Q, Li D, Chen H, Xiang J, Li H, Zhang Y, Zhao W, Zhao K. Phosphorylated AKT1 is associated with poor prognosis in esophageal squamous cell carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:95. [PMID: 26338103 PMCID: PMC4559941 DOI: 10.1186/s13046-015-0212-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/25/2015] [Indexed: 11/10/2022]
Abstract
BACKGROUND The epidermal growth factor receptor (EGFR) signaling pathway is important in regulating biological behaviors in many malignancies. We explored whether expression and activation of EGFR and several components on its downstream pathways have prognostic significance in patients with esophageal squamous cell carcinoma (ESCC). METHODS Expression of EGFR, phosphorylated (p)-EGFR, AKT1, p-AKT1, AKT2, p-AKT2, ERK1, ERK2, p-ERK1/2, STAT3, and p-STAT3 was assessed by immunohistochemical analysis of tissue microarrays for 275 ESCC patients who had undergone complete three-field lymphadenectomy. Spearman rank correlation tests were used to determine the relationships among protein expression, and Cox regression analyses were performed to determine the prognostic factors on overall survival (OS). RESULTS p-EGFR expression was correlated statistically with all of the other phosphorylated markers. Gender, N stage, and p-AKT1 expression were found to be independent prognostic factors for OS. Increased expression of p-AKT1 was associated with decreased patient survival. EGFR and p-EGFR expression was not significantly associated with patient survival. CONCLUSION Activation of AKT1 was associated with poor prognosis in ESCC.
Collapse
Affiliation(s)
- Zhengfei Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong An Road, Shanghai, 200032, China.
| | - Weiwei Yu
- Department of Radiation Oncology, Six Hospital of Jiao Tong University, Shanghai, China.
| | - Xiaolong Fu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong An Road, Shanghai, 200032, China.
| | - Menghong Sun
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China. .,Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong An Road, Shanghai, 200032, China.
| | - Qiao Wei
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China. .,Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong An Road, Shanghai, 200032, China.
| | - Dali Li
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China. .,Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong An Road, Shanghai, 200032, China.
| | - Haiquan Chen
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China. .,Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong An Road, Shanghai, 200032, China.
| | - Jiaqing Xiang
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China. .,Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong An Road, Shanghai, 200032, China.
| | - Hecheng Li
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China. .,Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong An Road, Shanghai, 200032, China.
| | - Yawei Zhang
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China. .,Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong An Road, Shanghai, 200032, China.
| | - Weixin Zhao
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong An Road, Shanghai, 200032, China.
| | - Kuaile Zhao
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong An Road, Shanghai, 200032, China.
| |
Collapse
|