1
|
Ghanadi M, Padhye LP. Revealing the long-term impact of photodegradation and fragmentation on HDPE in the marine environment: Origins of microplastics and dissolved organics. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133509. [PMID: 38232551 DOI: 10.1016/j.jhazmat.2024.133509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/25/2023] [Accepted: 01/09/2024] [Indexed: 01/19/2024]
Abstract
The extensive usage of high-density polyethylene (HDPE) materials in marine environments raises concerns about their potential contribution to plastic pollution. Various factors contribute to the degradation of HDPE in marine environments, including UV radiation, seawater hydrolysis, biodegradation, and mechanical stress. Despite their supposed long lifespans, there is still a lack of understanding about the long-term degradation mechanisms that cause weathering of seawater-exposed HDPE products. In this research, the impact of UV radiation on the degradation of HDPE pile sleeves was studied in natural as well as laboratory settings to isolate the UV effect. After nine years of exposure to the marine environment in natural settings, the HDPE pile sleeves exhibited an increase in oxygen-containing surface functional groups and more morphological changes compared to accelerated UVB irradiation in the laboratory. This indicated that combined non-UV mechanisms may play a major role in HDPE degradation than UV irradiation alone. However, UVB irradiation was found to release dissolved organic carbon and total dissolved nitrogen from HDPE pile sleeves, reaching levels of up to 15 mg/L and 2 mg/L, respectively. Our findings underscore the significance of taking into account both UV and non-UV degradation mechanisms when evaluating the role of HDPE in contributing to marine plastic pollution.
Collapse
Affiliation(s)
- Mahyar Ghanadi
- Department of Civil and Environmental Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Lokesh P Padhye
- Department of Civil and Environmental Engineering, The University of Auckland, Auckland 1010, New Zealand.
| |
Collapse
|
2
|
Chan YH, Lock SSM, Chin BLF, Wong MK, Loy ACM, Foong SY, Yiin CL, Lam SS. Progress in thermochemical co-processing of biomass and sludge for sustainable energy, value-added products and circular economy. BIORESOURCE TECHNOLOGY 2023; 380:129061. [PMID: 37075852 DOI: 10.1016/j.biortech.2023.129061] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
To achieve the main goal of net zero carbon emission, the shift from conventional fossil-based energy/products to renewable and low carbon-based energy/products is necessary. Biomass has been perceived as a carbon-neutral source from which energy and value-added products can be derived, while sludge is a slurry waste that inherently contains high amount of minerals and organic matters. Hence, thermochemical co-processing of biomass wastes and sludge could create positive synergistic effects, resulting in enhanced performance of the process (higher conversion or yield) and improved qualities or characteristics of the products as compared to that of mono-processing. This review presents the current progress and development for various thermochemical techniques of biomass-sludge co-conversion to energy and high-value products, and the potential applications of these products from circular economy's point of view. Also, these technologies are discussed from economic and environmental standpoints, and the outlook towards technology maturation and successful commercialization is laid out.
Collapse
Affiliation(s)
- Yi Herng Chan
- PETRONAS Research Sdn. Bhd. (PRSB), Lot 3288 & 3289, Off Jalan Ayer Itam, Kawasan Institusi Bangi, 43000 Kajang, Selangor, Malaysia.
| | - Serene Sow Mun Lock
- CO(2) Research Center (CO(2)RES), Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Malaysia
| | - Bridgid Lai Fui Chin
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia; Energy and Environment Research Cluster, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Mee Kee Wong
- PETRONAS Research Sdn. Bhd. (PRSB), Lot 3288 & 3289, Off Jalan Ayer Itam, Kawasan Institusi Bangi, 43000 Kajang, Selangor, Malaysia
| | | | - Shin Ying Foong
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Chung Loong Yiin
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS), 94300 Kota Samarahan, Sarawak, Malaysia; Institute of Sustainable and Renewable Energy (ISuRE), Universiti Malaysia Sarawak (UNIMAS), 94300 Kota Samarahan, Sarawak, Malaysia
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Center for Transdisciplinary Research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|