1
|
Kamala K, Rajeshkumar S, Sivaperumal P. The predominance of Shiga toxin-producing E. coli in the Southeast Coast of India. MARINE POLLUTION BULLETIN 2022; 174:113188. [PMID: 34856431 DOI: 10.1016/j.marpolbul.2021.113188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/09/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
In this study, we reported Shiga toxin-producing Escherichia coli (STEC) in 847 samples, including those in coastal waters, sediments, and fish samples in the Southeast Coast of India. A total of 3742 E. coli strains were identified using conventional and molecular identification methods. Of these, 1518 isolates expressed virulent genes Stx1, Stx2, and Eae; effects on these genes on toxicity were examined. Furthermore, 2224 non-STEC isolates caused hemolytic uremic syndrome and played a key role in the persistence of STEC contamination. We conclude that toxin production is not adequate to cause disease, and the pathogenic mechanism of STEC remains poorly defined. Therefore, the present study indicates the status of pollution, highlighting the need for sanitation in public health.
Collapse
Affiliation(s)
- Kannan Kamala
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600077, India
| | - Shanmugam Rajeshkumar
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600077, India
| | - Pitchiah Sivaperumal
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600077, India.
| |
Collapse
|
2
|
A new single-tube platform of melting temperature curve analysis based on multiplex real-time PCR using EvaGreen for simultaneous screening detection of Shiga toxin-producing Escherichia coli, Salmonella spp. and Listeria monocytogenes in food. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
3
|
Tian K, Chen X, Luan B, Singh P, Yang Z, Gates KS, Lin M, Mustapha A, Gu LQ. Single Locked Nucleic Acid-Enhanced Nanopore Genetic Discrimination of Pathogenic Serotypes and Cancer Driver Mutations. ACS NANO 2018; 12:4194-4205. [PMID: 29664612 PMCID: PMC6157732 DOI: 10.1021/acsnano.8b01198] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Accurate and rapid detection of single-nucleotide polymorphism (SNP) in pathogenic mutants is crucial for many fields such as food safety regulation and disease diagnostics. Current detection methods involve laborious sample preparations and expensive characterizations. Here, we investigated a single locked nucleic acid (LNA) approach, facilitated by a nanopore single-molecule sensor, to accurately determine SNPs for detection of Shiga toxin producing Escherichia coli (STEC) serotype O157:H7, and cancer-derived EGFR L858R and KRAS G12D driver mutations. Current LNA applications that require incorporation and optimization of multiple LNA nucleotides. But we found that in the nanopore system, a single LNA introduced in the probe is sufficient to enhance the SNP discrimination capability by over 10-fold, allowing accurate detection of the pathogenic mutant DNA mixed in a large amount of the wild-type DNA. Importantly, the molecular mechanistic study suggests that such a significant improvement is due to the effect of the single-LNA that both stabilizes the fully matched base-pair and destabilizes the mismatched base-pair. This sensitive method, with a simplified, low cost, easy-to-operate LNA design, could be generalized for various applications that need rapid and accurate identification of single-nucleotide variations.
Collapse
Affiliation(s)
- Kai Tian
- Department of Bioengineering and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211, United States
| | - Xiaowei Chen
- Food Science Program, Division of Food Systems and Bioengineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Binquan Luan
- Computational Biology Center, IBM Thomas J. Watson Research, Yorktown Heights, New York 10598, United States
| | - Prashant Singh
- Food Science Program, Division of Food Systems and Bioengineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Zhiyu Yang
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Kent S. Gates
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Mengshi Lin
- Food Science Program, Division of Food Systems and Bioengineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Azlin Mustapha
- Food Science Program, Division of Food Systems and Bioengineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Li-Qun Gu
- Department of Bioengineering and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
4
|
Akyol I. Development and application of RTi-PCR method for common food pathogen presence and quantity in beef, sheep and chicken meat. Meat Sci 2018; 137:9-15. [DOI: 10.1016/j.meatsci.2017.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/22/2017] [Accepted: 11/01/2017] [Indexed: 10/18/2022]
|
5
|
Abstract
AbstractO-antigens present on the surface ofEscherichia coliprovide antigenic specificity for the strain and are the main components for O-serogroup designation. Serotyping using O-group-specific antisera for the identification ofE. coliO-serogroups has been traditionally the gold-standard for distinguishingE. colistrains. Knowledge of the O-group is important for determining pathogenic lineage, classifyingE. colifor epidemiological studies, for determining virulence, and for tracing outbreaks of diseases and sources of infection. However, serotyping has limitations, as the antisera generated against each specific O-group may cross-react, many strains are non-typeable, and others can autoagglutinate or be rough (lacking an O-antigen). Currently, the nucleotide sequences are available for most of the 187 designatedE. coliO-groups. Public health and other laboratories are considering whole genome sequencing to develop genotypic methods to determine O-groups. These procedures require instrumentation and analysis that may not be accessible and may be cost-prohibitive at this time. In this review, we have identified unique gene sequences within the O-antigen gene clusters and have targeted these genes for identification of O-groups using the polymerase chain reaction. This information can be used to distinguish O-groups by developing other platforms forE. colidiagnostics in the future.
Collapse
|
6
|
Liang W, Xu L, Sui Z, Li Y, Li L, Wen Y, Li C, Ren S, Liu G. Quantification of plasmid DNA reference materials for Shiga toxin-producing Escherichia coli based on UV, HR-ICP-MS and digital PCR. Chem Cent J 2016; 10:55. [PMID: 27621755 PMCID: PMC5018943 DOI: 10.1186/s13065-016-0201-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 09/01/2016] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The accuracy and metrology traceability of DNA quantification is becoming a critical theme in many fields, including diagnosis, forensic analysis, microorganism detection etc. Thus the research of DNA reference materials (RMs) and consistency of DNA quantification methods has attracted considerable research interest. RESULTS In this work, we developed 3 plasmid candidate RMs, containing 3 target genes of Escherichia coli O157:H7 (E. coli O157:H7) and other Shiga toxin-producing Escherichia coli (STEC): stx1, stx2, and fliC (h7) respectively. Comprehensive investigation of the plasmid RMs was performed for their sequence, purity, homogeneity and stability, and then the concentration was quantified by three different methods: ultraviolet spectrophotometer (UV), high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) and digital PCR. As a routinely applied method for DNA analysis, UV was utilized for the quantification (OD260) and purity analysis for the plasmids. HR-ICP-MS quantified the plasmid DNA through analysing the phosphorus in DNA molecules. Digital PCR distributed the DNA samples onto a microarray chip containing thousands of reaction chambers, and quantified the DNA copy numbers by analysing the number of positive signals without any calibration curves needed. CONCLUSIONS Based on the high purification of the DNA reference materials and the optimization of dPCR analysis, we successfully achieved good consistency between UV, HR-ICP-MS and dPCR, with relative deviations lower than 10 %. We then performed the co-quantification of 3 DNA RMs with three different methods together, and the uncertainties of their concentration were evaluated. Finally, the certified values and expanded uncertainties for 3 DNA RMs (pFliC, pStx1 and pStx2) were (1.60 ± 0.10) × 10(10) copies/μL, (1.53 ± 0.10) × 10(10) copies/μL and (1.70 ± 0.11) × 10(10) copies/μL respectively.Graphical abstractWe developed 3 plasmid candidate RMs, containing 3 target genes of Escherichia coli O157:H7 (E. coli O157:H7) and other Shiga toxin-producing Escherichia coli (STEC): stx1, stx2, and fliC (h7) respectively, and the quantification of three different methods (UV, dPCR, ICP) was studied.
Collapse
Affiliation(s)
- Wen Liang
- Laboratory of Biometrology, Shanghai Institute of Measurement and Testing Technology, 1500 Zhang Heng Road, Shanghai, 201203 People’s Republic of China
| | - Li Xu
- Laboratory of Biometrology, Shanghai Institute of Measurement and Testing Technology, 1500 Zhang Heng Road, Shanghai, 201203 People’s Republic of China
| | - Zhiwei Sui
- Division of Medical and Biological Measurement, National Institute of Metrology, No.18, Bei San Huan Dong Lu, Chaoyang District, Beijing, 100013 People’s Republic of China
| | - Yan Li
- Laboratory of Biometrology, Shanghai Institute of Measurement and Testing Technology, 1500 Zhang Heng Road, Shanghai, 201203 People’s Republic of China
| | - Lanying Li
- Laboratory of Biometrology, Shanghai Institute of Measurement and Testing Technology, 1500 Zhang Heng Road, Shanghai, 201203 People’s Republic of China
| | - Yanli Wen
- Laboratory of Biometrology, Shanghai Institute of Measurement and Testing Technology, 1500 Zhang Heng Road, Shanghai, 201203 People’s Republic of China
| | - Chunhua Li
- Laboratory of Biometrology, Shanghai Institute of Measurement and Testing Technology, 1500 Zhang Heng Road, Shanghai, 201203 People’s Republic of China
| | - Shuzhen Ren
- Laboratory of Biometrology, Shanghai Institute of Measurement and Testing Technology, 1500 Zhang Heng Road, Shanghai, 201203 People’s Republic of China
| | - Gang Liu
- Laboratory of Biometrology, Shanghai Institute of Measurement and Testing Technology, 1500 Zhang Heng Road, Shanghai, 201203 People’s Republic of China
| |
Collapse
|
7
|
Gutierrez ME, Janes ME, Torrico DD, Carabante KM, Prinyawiwatkul W. Assessment of the ability of five culture media for the detection of
E
scherichia coli
O157. Int J Food Sci Technol 2016. [DOI: 10.1111/ijfs.13164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Myriam E. Gutierrez
- School of Nutrition and Food Sciences Louisiana State University Agricultural Center Baton Rouge LA 70803 USA
| | - Marlene E. Janes
- School of Nutrition and Food Sciences Louisiana State University Agricultural Center Baton Rouge LA 70803 USA
| | - Damir D. Torrico
- Faculty of Veterinary and Agricultural Sciences, Food and Wine Science The University of Melbourne Parkville 3055 Vic. Australia
| | - Kennet M. Carabante
- School of Nutrition and Food Sciences Louisiana State University Agricultural Center Baton Rouge LA 70803 USA
| | - Witoon Prinyawiwatkul
- School of Nutrition and Food Sciences Louisiana State University Agricultural Center Baton Rouge LA 70803 USA
| |
Collapse
|
8
|
Fratamico PM, DebRoy C, Liu Y, Needleman DS, Baranzoni GM, Feng P. Advances in Molecular Serotyping and Subtyping of Escherichia coli. Front Microbiol 2016; 7:644. [PMID: 27199968 PMCID: PMC4853403 DOI: 10.3389/fmicb.2016.00644] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/18/2016] [Indexed: 01/25/2023] Open
Abstract
Escherichia coli plays an important role as a member of the gut microbiota; however, pathogenic strains also exist, including various diarrheagenic E. coli pathotypes and extraintestinal pathogenic E. coli that cause illness outside of the GI-tract. E. coli have traditionally been serotyped using antisera against the ca. 186 O-antigens and 53 H-flagellar antigens. Phenotypic methods, including bacteriophage typing and O- and H- serotyping for differentiating and characterizing E. coli have been used for many years; however, these methods are generally time consuming and not always accurate. Advances in next generation sequencing technologies have made it possible to develop genetic-based subtyping and molecular serotyping methods for E. coli, which are more discriminatory compared to phenotypic typing methods. Furthermore, whole genome sequencing (WGS) of E. coli is replacing established subtyping methods such as pulsed-field gel electrophoresis, providing a major advancement in the ability to investigate food-borne disease outbreaks and for trace-back to sources. A variety of sequence analysis tools and bioinformatic pipelines are being developed to analyze the vast amount of data generated by WGS and to obtain specific information such as O- and H-group determination and the presence of virulence genes and other genetic markers.
Collapse
Affiliation(s)
- Pina M. Fratamico
- Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, WyndmoorPA, USA
| | - Chitrita DebRoy
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University ParkPA, USA
| | - Yanhong Liu
- Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, WyndmoorPA, USA
| | - David S. Needleman
- Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, WyndmoorPA, USA
| | - Gian Marco Baranzoni
- Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, WyndmoorPA, USA
| | - Peter Feng
- Division of Microbiology, U.S. Food and Drug Administration, College ParkMD, USA
| |
Collapse
|
9
|
Molecular screening and characterization of Shiga toxin-producing Escherichia coli in retail foods. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.07.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
10
|
Harada T, Iguchi A, Iyoda S, Seto K, Taguchi M, Kumeda Y. Multiplex Real-Time PCR Assays for Screening of Shiga Toxin 1 and 2 Genes, Including All Known Subtypes, and Escherichia coli O26-, O111-, and O157-Specific Genes in Beef and Sprout Enrichment Cultures. J Food Prot 2015; 78:1800-11. [PMID: 26408128 DOI: 10.4315/0362-028x.jfp-15-050] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Shiga toxin family members have recently been classified using a new nomenclature into three Stx1 subtypes (Stx1a, Stx1c, and Stx1d) and seven Stx2 subtypes (Stx2a, Stx2b, Stx2c, Stx2d, Stx2e, Stx2f, and Stx2g). To develop screening methods for Stx genes, including all of these subtype genes, and Escherichia coli O26-, O111-, and O157-specific genes in laboratory investigations of Shiga toxin-producing E. coli (STEC) foodborne cases, we developed multiplex real-time PCR assays and evaluated their specificity and quantitative accuracy using STEC and non-STEC isolates, recombinant plasmids, and food enrichment cultures and by performing STEC spiking experiments with beef and sprout enrichment cultures. In addition, we evaluated the relationship between the recovery rates of the target strains by direct plating and immunomagnetic separation and the cycle threshold (CT) values of the real-time PCR assays for the Stx subtypes and STEC O26, O111, and O157 serogroups. All three stx1- and seven stx2-subtype genes were detected by real-time PCR with high sensitivity and specificity, and the quantitative accuracy of this assay was confirmed using control plasmids and STEC spiking experiments. The results of the STEC spiking experiments suggest that it is not routinely possible to isolate STEC from enrichment cultures with real-time PCR CT values greater than 30 by direct plating on MacConkey agar, although highly selective media and immunomagnetic beads were able to isolate the inoculated strains from the enrichment cultures. These data suggest that CT values obtained from the highly quantitative real-time PCR assays developed in this study provide useful information to develop effective isolation strategies for STEC from food samples. The real-time PCR assays developed here are expected to aid in investigations of infections or outbreaks caused by STEC harboring any of the stx-subtype genes in the new Stx nomenclature, as well as STEC O26, O111, and O157.
Collapse
Affiliation(s)
- Tetsuya Harada
- Division of Bacteriology, Osaka Prefectural Institute of Public Health, Osaka 537-0025, Japan.
| | - Atsushi Iguchi
- Department of Animal and Grassland Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Sunao Iyoda
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Kazuko Seto
- Division of Bacteriology, Osaka Prefectural Institute of Public Health, Osaka 537-0025, Japan
| | - Masumi Taguchi
- Division of Bacteriology, Osaka Prefectural Institute of Public Health, Osaka 537-0025, Japan
| | - Yuko Kumeda
- Division of Bacteriology, Osaka Prefectural Institute of Public Health, Osaka 537-0025, Japan
| |
Collapse
|
11
|
Evaluation of a loop-mediated isothermal amplification suite for the rapid, reliable, and robust detection of Shiga toxin-producing Escherichia coli in produce. Appl Environ Microbiol 2014; 80:2516-25. [PMID: 24509927 DOI: 10.1128/aem.04203-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) strains are a leading cause of produce-associated outbreaks in the United States. Rapid, reliable, and robust detection methods are needed to better ensure produce safety. We recently developed a loop-mediated isothermal amplification (LAMP) suite for STEC detection. In this study, the STEC LAMP suite was comprehensively evaluated against real-time quantitative PCR (qPCR) using a large panel of bacterial strains (n = 156) and various produce items (several varieties of lettuce, spinach, and sprouts). To simulate real-world contamination events, produce samples were surface inoculated with a low level (1.2 to 1.8 CFU/25 g) of individual STEC strains belonging to seven serogroups (O26, O45, O103, O111, O121, O145, and O157) and held at 4°C for 48 h before testing. Six DNA extraction methods were also compared using produce enrichment broths. All STEC targets and their subtypes were accurately detected by the LAMP suite. The detection limits were 1 to 20 cells per reaction in pure culture and 10(5) to 10(6) CFU per 25 g (i.e., 10(3) to 10(4) CFU per g) in produce, except for strains harboring the stx2c, eae-β, and eae-θ subtypes. After 6 to 8 h of enrichment, the LAMP suite achieved accurate detection of low levels of STEC strains of various stx2 and eae subtypes in lettuce and spinach varieties but not in sprouts. A similar trend of detection was observed for qPCR. The PrepMan Ultra sample preparation reagent yielded the best results among the six DNA extraction methods. This research provided a rapid, reliable, and robust method for detecting STEC in produce during routine sampling and testing. The challenge with sprouts detection by both LAMP and qPCR calls for special attention to further analysis.
Collapse
|
12
|
Gordillo R, Rodríguez A, Werning ML, Bermúdez E, Rodríguez M. Quantification of viable Escherichia coli O157:H7 in meat products by duplex real-time PCR assays. Meat Sci 2014; 96:964-70. [DOI: 10.1016/j.meatsci.2013.10.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 05/03/2013] [Accepted: 10/12/2013] [Indexed: 01/04/2023]
|
13
|
Detection of Escherichia coli O157 by peptide nucleic acid fluorescence in situ hybridization (PNA-FISH) and comparison to a standard culture method. Appl Environ Microbiol 2013; 79:6293-300. [PMID: 23934486 DOI: 10.1128/aem.01009-13] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Despite the emergence of non-O157 Shiga toxin-producing Escherichia coli (STEC) infections, E. coli serotype O157 is still the most commonly identified STEC in the world. It causes high morbidity and mortality and has been responsible for a number of outbreaks in many parts of the world. Various methods have been developed to detect this particular serotype, but standard bacteriological methods remain the gold standard. Here, we propose a new peptide nucleic acid fluorescence in situ hybridization (PNA-FISH) method for the rapid detection of E. coli O157. Testing on 54 representative strains showed that the PNA probe is highly sensitive and specific to E. coli O157. The method then was optimized for detection in food samples. Ground beef and unpasteurized milk samples were artificially contaminated with E. coli O157 concentrations ranging from 1 × 10(-2) to 1 × 10(2) CFU per 25 g or ml of food. Samples were then preenriched and analyzed by both the traditional bacteriological method (ISO 16654:2001) and PNA-FISH. The PNA-FISH method performed well in both types of food matrices with a detection limit of 1 CFU/25 g or ml of food samples. Tests on 60 food samples have shown a specificity value of 100% (95% confidence interval [CI], 82.83 to 100), a sensitivity of 97.22% (95% CI, 83.79 to 99.85%), and an accuracy of 98.33% (CI 95%, 83.41 to 99.91%). Results indicate that PNA-FISH performed as well as the traditional culture methods and can reduce the diagnosis time to 1 day.
Collapse
|
14
|
Chang J, Mao S, Zhang Y, Cui S, Zhou G, Wu X, Yang CH, Chen J. Ultrasonic-assisted self-assembly of monolayer graphene oxide for rapid detection of Escherichia coli bacteria. NANOSCALE 2013; 5:3620-6. [PMID: 23519240 DOI: 10.1039/c3nr00141e] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Due to potential risks to the environment and human health arising from pathogens/chemical contaminants, novel devices are being developed for rapid and precise detection of those contaminants. Here, we demonstrate highly sensitive and selective field-effect transistor (FET) sensor devices for detection of Escherichia coli (E. coli) bacteria using thermally reduced monolayer graphene oxide (TRMGO) sheets as semiconducting channels. The graphene oxide (GO) sheets are assembled on the aminoethanethiol (AET)-functionalized gold (Au) electrodes through electrostatic interactions with ultrasonic assistance. Anti-Escherichia coli (anti-E. coli) antibodies are used as receptors for selective detection of E. coli cells and integrated on the FET device through covalent bonding with Au nanoparticles on the GO surface. The TRMGO FET device shows great electronic stability and high sensitivity to E. coli cells with a concentration as low as 10 colony-forming units (cfu) per mL. The biosensing platform reported here is promising for large-scale, sensitive, selective, low-cost, and real-time detection of E. coli bacteria.
Collapse
Affiliation(s)
- Jingbo Chang
- Department of Mechanical Engineering, University of Wisconsin-Milwaukee, 3200 North Cramer Street, Milwaukee, WI 53211, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Garrido A, Chapela MJ, Román B, Fajardo P, Vieites JM, Cabado AG. In-house validation of a multiplex real-time PCR method for simultaneous detection of Salmonella spp., Escherichia coli O157 and Listeria monocytogenes. Int J Food Microbiol 2013; 164:92-8. [PMID: 23624537 DOI: 10.1016/j.ijfoodmicro.2013.03.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 02/24/2013] [Accepted: 03/26/2013] [Indexed: 10/27/2022]
Abstract
A wide variety of qPCR methods currently exist for Salmonella spp., Escherichia coli O157 and Listeria monocytogenes detection. These methods target several genes and use different detection chemistries, either in simplex or in multiplex formats. However, the majority of these methods have not been carefully validated, and the number of validated methods that use multiplex qPCR is even lower. The aim of the present study was to develop and validate a multiplex qPCR method from previously validated simplex qPCR primers and probes. A modified broth medium was selected and primary and secondary enrichment times were further optimized. Efficiency of the newly combined qPCR system was comprised between 91% and 108%, for simplex and multiplex analyses. A total of 152 food and environmental, natural and spiked samples, were analyzed for the evaluation of the method obtaining values above 91% that were reached for all the quality parameters analyzed. A very low limit of detection (5 cfu/25 g after enrichment) for simultaneous identification of these 3 pathogens was obtained.
Collapse
Affiliation(s)
- Alejandro Garrido
- Microbiology and Toxins Area, ANFACO-CECOPESCA, Campus Univ. 16, 36310 Vigo PO, Spain
| | | | | | | | | | | |
Collapse
|
16
|
Rapid and specific detection of escherichia coli serogroups O26, O45, O103, O111, O121, O145, and O157 in ground beef, beef trim, and produce by loop-mediated isothermal amplification. Appl Environ Microbiol 2012; 78:2727-36. [PMID: 22327594 DOI: 10.1128/aem.07975-11] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli O157 and six additional serogroups of Shiga toxin-producing E. coli (STEC) (O26, O45, O103, O111, O121, and O145) account for the majority of STEC infections in the United States. In this study, O serogroup-specific genes (wzx or wzy) were used to design loop-mediated isothermal amplification (LAMP) assays for the rapid and specific detection of these leading STEC serogroups. The assays were evaluated in pure culture and spiked food samples (ground beef, beef trim, lettuce, and spinach) and compared with real-time quantitative PCR (qPCR). No false-positive or false-negative results were observed among 120 bacterial strains used to evaluate assay specificity. The limits of detection of various STEC strains belonging to these target serogroups were approximately 1 to 20 CFU/reaction mixture in pure culture and 10(3) to 10(4) CFU/g in spiked food samples, which were comparable to those of qPCR. Standard curves generated suggested good linear relationships between STEC cell numbers and LAMP turbidity signals. In various beef and produce samples spiked with two low levels (1 to 2 and 10 to 20 CFU/25 g) of respective STEC strains, the LAMP assays consistently achieved accurate detection after 6 to 8 h of enrichment. In conclusion, these newly developed LAMP assays may facilitate rapid and reliable detection of the seven major STEC serogroups in ground beef, beef trim, and produce during routine sample testing.
Collapse
|
17
|
Fratamico PM, Bagi LK, Cray WC, Narang N, Yan X, Medina M, Liu Y. Detection by multiplex real-time polymerase chain reaction assays and isolation of Shiga toxin-producing Escherichia coli serogroups O26, O45, O103, O111, O121, and O145 in ground beef. Foodborne Pathog Dis 2011; 8:601-7. [PMID: 21214490 DOI: 10.1089/fpd.2010.0773] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Six Shiga toxin-producing Escherichia coli (STEC) serogroups, which include O26, O45, O103, O111, O121, and O145, are responsible for the majority of non-O157 STEC infections in the United States, representing a growing public health concern. Cattle and other ruminants are reservoirs for these pathogens; thus, food of bovine origin may be a vehicle for infection with non-O157 STEC. Methods for detection of these pathogens in animal reservoirs and in food are needed to determine their prevalence and to develop intervention strategies. This study describes a method for detection of non-O157 STEC in ground beef, consisting of enrichment in modified tryptic soy broth at 42°C, followed by real-time multiplex polymerase chain reaction (PCR) assays targeting stx(1), stx(2), and genes in the O-antigen gene clusters of the six serogroups, [corrected] and then immunomagnetic separation (IMS) followed by plating onto Rainbow® Agar O157 and PCR assays for confirmation of isolates. All ground beef samples artificially inoculated with 1-2 and 10-20 CFU/25 g of ground beef consistently gave positive results for all of the target genes, including the internal amplification control using the multiplex real-time PCR assays after enrichment in modified tryptic soy broth for a total of 24 h (6 h at 37°C and 18 h at 42°C). The detection limit of the real-time multiplex PCR assays was ∼50 CFU per PCR. IMS for O26, O103, O111, and O145 was performed with commercially available magnetic beads, and the IMS beads for O45 and O121 were prepared using polyclonal antiserum against these serogroups. A large percentage of the presumptive colonies of each serogroup picked from Rainbow Agar O157 were confirmed as the respective serogroups; however, the percent recovery of STEC O111 was somewhat lower than that of the other serogroups. This work provides a method for detection and isolation in ground beef and potentially other foods of non-O157 STEC of major public health concern.
Collapse
Affiliation(s)
- Pina M Fratamico
- Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA.
| | | | | | | | | | | | | |
Collapse
|