Wang Z, Zhang DW, Xiao ZZ, Qi CH, Yuan J, Feng HX. Preliminary study on alleviation of heat-induced intestinal inflammation through compensatory effects of glucose oxidase.
Br Poult Sci 2021;
63:235-243. [PMID:
34406099 DOI:
10.1080/00071668.2021.1969645]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
1. The influence of glucose oxidase (GOD) supplementation on growth, gut inflammation and its compensatory effects in broilers was investigated before and after heat stress.2. Before heat stress, one-day-old broilers were divided into two groups: the control (CON) and GOD (100 g/t complete feed) groups. On d 21, the CON group was equally divided into CON1 and CON2 groups, and heat stress (35°C) was applied to the CON2 and GOD groups for 8 h/day to the end of the study, d 27 of age. The chickens were either killed before heat stress and 2 d after heat stress for the determination of cytokines in the liver and ileum, serum antioxidant enzymes and ileal microbiota. Growth performance was determined before and 7 d after heat stress.3. The GOD decreased Clostridiales and Enterobacteriaceae families of bacteria and increased ileal nuclear factor-κB, interleukin-1β, and interferon-γ (P < 0.05) before heat stress. The broilers exhibited compensatory effects, including increases in ileal sirtuin-1, heat shock protein 70 expression, liver nuclear factor erythroid 2-related factor 2 content, serum total antioxidant capacity and glutathione peroxidase level (P < 0.05). At 2 d after heat stress, inflammatory factors were increased in both the CON2 and GOD groups, but the levels were lower in the GOD than CON2 (P < 0.05). On d 7 after heat stress, GOS alleviated heat stress induced growth retardation (P < 0.05).4. These data suggested that GOD supplementation in broiler diets before heat stress stimulated intestinal oxidative stress and produced a compensatory response, which prevented a rapid increase in intestinal inflammatory factors and helped to maintain growth performance under heat stress.
Collapse