1
|
Shigemori H, Maejima K, Shibata H, Hiruta Y, Citterio D. Evaluation of cellophane as platform for colorimetric assays on microfluidic analytical devices. Mikrochim Acta 2023; 190:48. [PMID: 36622479 DOI: 10.1007/s00604-022-05622-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/14/2022] [Indexed: 01/10/2023]
Abstract
Due to their low cost, simplicity, and pump-free liquid transport properties, colorimetric assays on paper spots and microfluidic paper-based analytical devices (µPADs) are regarded as useful tools for point-of-care testing (POCT). However, for certain types of colorimetric assays, the "non-transparent" and "white" characters of paper can be a disadvantage. In this work, the possibilities of using cellophane as an alternative platform for colorimetric assays have been investigated. Cellophane is a low cost and easy-to-handle transparent film made of regenerated cellulose. Owing to its hydrophilic character, cellophane-based microfluidic channels fabricated through a print-cut-laminate approach enabled pump-free liquid transport into multiple detection areas, similar to µPADs. In addition, the water absorption characteristics of cellophane allowed the stable immobilization of water-soluble colorimetric indicators without any surface modification or additional reagents. The transparency of cellophane provides possibilities for simple background coloring of the substrates, increasing the dynamic signal range for hue-based colorimetric assays, as demonstrated for two model assays targeting H2O2 (46-fold increase) and creatinine (3.6-fold increase). Finally, a turbidity detection-based protein assay was realized on black background cellophane spots. The lowest limits of detection achieved with the cellophane-based devices were calculated as 7 µM for H2O2, 2.7 mg dL-1 for creatinine, and 3.5 mg dL-1 for protein (human serum albumin).
Collapse
Affiliation(s)
- Hiroki Shigemori
- Department of Applied Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-Ku, Yokohama, Kanagawa, 223-8522, Japan.,AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory (PhotoBIO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Photonics Center Osaka University, 2-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan.,Graduate School of Human Development and Environment, Kobe University, 3-11 Tsurukabuto, Nada-Ku, Kobe, Hyogo, 657-0011, Japan
| | - Kento Maejima
- Department of Applied Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-Ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Hiroyuki Shibata
- Department of Applied Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-Ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Yuki Hiruta
- Department of Applied Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-Ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Daniel Citterio
- Department of Applied Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-Ku, Yokohama, Kanagawa, 223-8522, Japan.
| |
Collapse
|
2
|
Sinha A, Basu M, Chandna P. Paper based microfluidics: A forecast toward the most affordable and rapid point-of-care devices. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 186:109-158. [PMID: 35033281 DOI: 10.1016/bs.pmbts.2021.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The microfluidic industry has evolved through years with acquired scientific knowledge from different, and already developed industries. Consequently, a wide range of materials like silicon from the electronic industry to all the way, silicone, from the chemical engineering industry, has been spotted to solve similar challenges. Although a typical microfluidic chip, fabricated from glass or polymer substrates offers definite benefits, however, paper-based microfluidic analytical devices (μPADs) possess numerous special benefits for practical implementation at a lower price. Owing to these features, in recent years, paper microfluidics has drawn immense interest from researchers in industry and academia alike. These devices have wider applications with advantages like lower cost, speedy detection, user-easiness, biocompatibility, sensitivity, and specificity etc. when compared to other microfluidic devices. Therefore, these sensitive but affordable devices fit themselves into point-of-care (POC) testing with features in demand like natural disposability, situational flexibility, and the capability to store and analyze the target at the point of requirement. Gradually, advancements in fabrication technologies, assay development techniques, and improved packaging capabilities, have contributed significantly to the real-time identification and health investigation through paper microfluidics; however, the growth has not been limited to the biomedical field; industries like electronics, energy storage and many more have expanded substantially. Here, we represent an overall state of the paper-based microfluidic technology by covering the fundamentals, working principles, different fabrication procedures, applications for various needs and then to make things more practical, the real-life scenario and practical challenges involved in launching a device into the market have been revealed. To conclude, recent contribution of μPADs in the 2020 pandemic and potential future possibilities have been reviewed.
Collapse
|
3
|
Magnaghi LR, Alberti G, Pazzi BM, Zanoni C, Biesuz R. A green-PAD array combined with chemometrics for pH measurements. NEW J CHEM 2022. [DOI: 10.1039/d2nj03675d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This work presents the development of a green paper-based analytical device (Green-PAD) array for pH detection.
Collapse
Affiliation(s)
- Lisa R. Magnaghi
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
- Unità di Ricerca di Pavia, INSTM, Via G. Giusti 9, 50121 Firenze, Italy
| | - Giancarla Alberti
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Bianca M. Pazzi
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Camilla Zanoni
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Raffaela Biesuz
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
- Unità di Ricerca di Pavia, INSTM, Via G. Giusti 9, 50121 Firenze, Italy
| |
Collapse
|
4
|
Song G, Jiang D, Wang L, Sun X, Liu H, Tian Y, Chen M. A series of simple curcumin-derived colorimetric and fluorescent probes for ratiometric-pH sensing and cell imaging. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.06.076] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Eco-friendly pH detecting paper-based analytical device: Towards process intensification. Anal Chim Acta 2021; 1182:338953. [PMID: 34602199 DOI: 10.1016/j.aca.2021.338953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/24/2021] [Accepted: 08/05/2021] [Indexed: 11/21/2022]
Abstract
This work describes the development of a miniaturized paper-based pH detection platform using natural dye extracted from red cabbage (Brassica oleracea). The easily available paper was used as a substrate and the requisite patterned zone was created with the aid of a punching machine. Experimental parameters were optimized to obtain the best signal readout. The performance of the device at different pH values was quantitatively assessed using digital image analysis with various color space models. Regression analysis suggested that a∗ parameter in CIEL∗a∗b∗ color space model, which captures the variations on the red-green scale, exhibited the best fit with experimental data (R2 = 0.9754). This parameter was used for the quantitative estimation of pH variations in a wide range of pH (1-12). A series of real test samples were examined using the paper-based device and results validated with a standard pH meter. The use of paper and natural dye makes the device eco-friendly. The simplicity of fabrication, ease of usage and low reagent and sample volume requirements render the methodology suitable for in situ measurements of pH. The approach demonstrated here would pave the way for the development of clean, sustainable and intensified chemical sensor technologies.
Collapse
|
6
|
Li W, Yu Y, Dai Z, Peng J, Wu J, Wang Z. Preparation and evaluation of a novel intelligent starch‐based film with both color indication and antibacterial function. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Wenhui Li
- Department of Food Science and Engineering School of Agriculture and Biology Shanghai Jiao Tong University Shanghai China
| | - Ying Yu
- Department of Food Science and Engineering School of Agriculture and Biology Shanghai Jiao Tong University Shanghai China
| | - Ziyang Dai
- Department of Food Science and Engineering School of Agriculture and Biology Shanghai Jiao Tong University Shanghai China
| | - Jielong Peng
- Department of Food Science and Engineering School of Agriculture and Biology Shanghai Jiao Tong University Shanghai China
| | - Jinhong Wu
- Department of Food Science and Engineering School of Agriculture and Biology Shanghai Jiao Tong University Shanghai China
| | - Zhengwu Wang
- Department of Food Science and Engineering School of Agriculture and Biology Shanghai Jiao Tong University Shanghai China
| |
Collapse
|
7
|
Green and high-yield synthesis of carbon dots for ratiometric fluorescent determination of pH and enzyme reactions. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111264. [DOI: 10.1016/j.msec.2020.111264] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 11/20/2022]
|
8
|
Development of a novel on–off type carbon dioxide indicator based on interactions between sodium caseinate and pectin. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.01.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
A pH-Sensing Film from Tamarind Seed Polysaccharide with Litmus Lichen Extract as an Indicator. Polymers (Basel) 2017; 10:polym10010013. [PMID: 30966049 PMCID: PMC6415087 DOI: 10.3390/polym10010013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 12/20/2017] [Indexed: 12/01/2022] Open
Abstract
A new pH-sensing film was developed by using tamarind seed polysaccharide (TSP) and natural dye extracted from litmus lichen (LLE). The addition of LLE from 0 to 2.5% decreased the tensile strength and elongation at break from 30.20 to 29.97 MPa and 69.73% to 60.13%, respectively, but increased the water vapor permeability from 0.399 × 10−9 to 0.434 × 10−9 g·s−1·m−1·Pa−1. The UV–Vis spectra of the litmus lichen extract (LLE) in the pH range of 4–10 showed that the color clearly changed from orange to blue. The characterization results showed that TSP interacted with LLE through hydrogen bonds. The color of the film varied from orange (pH 4.0) to blue-violet (pH 10.0). The full cream milk spoilage test indicated that the film is suitable for application in full cream milk spoilage detection. The developed pH-sensing film could be used as a promising diagnostic tool for the detection of food spoilage.
Collapse
|
10
|
Reshetnyak E, Ostrovskaya V, Goloviznina K, Kamneva N. Influence of tetraalkylammonium halides on analytical properties of universal acid-base indicator paper. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.10.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Cheng S, Yang Y, Ni X, Peng J, Lai W. Fluorescent microspheres lateral flow assay for sensitive detection of the milk allergen casein. FOOD AGR IMMUNOL 2017. [DOI: 10.1080/09540105.2017.1325841] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Song Cheng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, People’s Republic of China
| | - Yajie Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, People’s Republic of China
| | - Xiaoqin Ni
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, People’s Republic of China
| | - Juan Peng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, People’s Republic of China
| | - Weihua Lai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, People’s Republic of China
| |
Collapse
|
12
|
Intelligent pH indicator film composed of agar/potato starch and anthocyanin extracts from purple sweet potato. Food Chem 2017; 218:122-128. [DOI: 10.1016/j.foodchem.2016.09.050] [Citation(s) in RCA: 334] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 09/06/2016] [Accepted: 09/07/2016] [Indexed: 10/21/2022]
|