1
|
Wang S, Song H, Wang T, Xue H, Fei Y, Xiong X. Recent advancements with loop-mediated isothermal amplification (LAMP) in assessment of the species authenticity with meat and seafood products. Crit Rev Food Sci Nutr 2024; 65:2214-2235. [PMID: 38494899 DOI: 10.1080/10408398.2024.2329979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Species adulteration or mislabeling with meat and seafood products could negatively affect the fair trade, wildlife conservation, food safety, religion aspect, and even the public health. While PCR-based methods remain the gold standard for assessment of the species authenticity, there is an urgent need for alternative testing platforms that are rapid, accurate, simple, and portable. Owing to its ease of use, low cost, and rapidity, LAMP is becoming increasingly used method in food analysis for detecting species adulteration or mislabeling. In this review, we outline how the features of LAMP have been leveraged for species authentication test with meat and seafood products. Meanwhile, as the trend of LAMP detection is simple, rapid and instrument-free, it is of great necessity to carry out end-point visual detection, and the principles of various end-point colorimetry methods are also reviewed. Moreover, with the aim to enhance the LAMP reaction, different strategies are summarized to either suppress the nonspecific amplification, or to avoid the results of nonspecific amplification. Finally, microfluidic chip is a promising point-of-care method, which has been the subject of a great deal of research directed toward the development of microfluidic platforms-based LAMP systems for the species authenticity with meat and seafood products.
Collapse
Affiliation(s)
- Shihui Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Hongwei Song
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Tianlong Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Hanyue Xue
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Yanjin Fei
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Xiong Xiong
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| |
Collapse
|
2
|
Niebling L, Nitzsche R, Sieksmeyer T, Haskamp V, Kissenkötter J, Abd El Wahed A, Teufel T, Hermann H, Paust N, Homann AR. Fast and on-site animal species identification in processed meat via centrifugal microfluidics and isothermal amplification. LAB ON A CHIP 2024; 24:975-984. [PMID: 38284233 DOI: 10.1039/d3lc01103h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
We present a novel centrifugal microfluidic approach to rapidly identify animal species in meat products. The workflow requires a centrifugal cartridge for DNA extraction and for preparation of a recombinant polymerase amplification (RPA) reaction, a programmable centrifuge for processing the cartridge and an isothermal reader to perform the RPA. Liquid reagents are pre-stored on the cartridge and the meat sample can be added directly without any pre-treatment. With this system, we are able to identify six different animal species in a single run within one hour. In pork salami containing horse, turkey, sheep, chicken and beef meat, it was possible to identify species levels as low as 0.01%. In beef salami and cooked pork sausages 0.1% of foreign meat could be detected. This novel workflow enables rapid and sensitive species identification in processed meat at the point of need.
Collapse
Affiliation(s)
- Laura Niebling
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.
| | - Ramona Nitzsche
- DIL German Institute of Food Technologies, Quakenbrueck, Germany
| | | | - Vera Haskamp
- DIL German Institute of Food Technologies, Quakenbrueck, Germany
| | - Jonas Kissenkötter
- Department of Animal Science, Division of Microbiology and Animal Hygiene, University of Goettingen, Goettingen, Germany
| | - Ahmed Abd El Wahed
- Department of Animal Science, Division of Microbiology and Animal Hygiene, University of Goettingen, Goettingen, Germany
| | | | | | - Nils Paust
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.
- Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Ana R Homann
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.
| |
Collapse
|
3
|
Zhang Z, Li Y, Zhao S, Qie M, Bai L, Gao Z, Liang K, Zhao Y. Rapid analysis technologies with chemometrics for food authenticity field: A review. Curr Res Food Sci 2024; 8:100676. [PMID: 38303999 PMCID: PMC10830540 DOI: 10.1016/j.crfs.2024.100676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/15/2023] [Accepted: 01/07/2024] [Indexed: 02/03/2024] Open
Abstract
In recent years, the problem of food adulteration has become increasingly rampant, seriously hindering the development of food production, consumption, and management. The common analytical methods used to determine food authenticity present challenges, such as complicated analysis processes and time-consuming procedures, necessitating the development of rapid, efficient analysis technology for food authentication. Spectroscopic techniques, ambient ionization mass spectrometry (AIMS), electronic sensors, and DNA-based technology have gradually been applied for food authentication due to advantages such as rapid analysis and simple operation. This paper summarizes the current research on rapid food authenticity analysis technology from three perspectives, including breeds or species determination, quality fraud detection, and geographical origin identification, and introduces chemometrics method adapted to rapid analysis techniques. It aims to promote the development of rapid analysis technology in the food authenticity field.
Collapse
Affiliation(s)
- Zixuan Zhang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yalan Li
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shanshan Zhao
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mengjie Qie
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lu Bai
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zhiwei Gao
- Hangzhou Nutritome Biotech Co., Ltd., Hangzhou, China
| | - Kehong Liang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yan Zhao
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Xiao B, Zhao R, Wang N, Zhang J, Sun X, Huang F, Chen A. Integrating microneedle DNA extraction to hand-held microfluidic colorimetric LAMP chip system for meat adulteration detection. Food Chem 2023; 411:135508. [PMID: 36701913 DOI: 10.1016/j.foodchem.2023.135508] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/07/2022] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
Most microfluidic-based "sample-in-result-out" systems suffer sophisticated microfluidic production processes, high-cost chips, and expensive instruments. They cannot be used in the meat market as well as farmer's markets in rural areas. Here, we developed a hand-held microfluidic chip system for on-site meat species qualitative authentication detection which integrated a simple microneedle DNA extraction and a visual loop-mediated isothermal amplification (LAMP). The chip can be used by easily pricking meat samples, simply hand-shaking the chip, and readily available isothermal heating instead of a complicated DNA extraction process and microfluidic control device. The system demonstrates high specificity and sensitivity for selected six species of meat samples and low to 1% simulated adulteration could be detected within 60 min. Besides, the whole cost was less than 1 dollar. The integrated hand-held microfluidic detection system offers a simple, fast, low-cost "sample-in-result-out" point-of-care device which could be extended to medical diagnosis and animal/plant disease identification.
Collapse
Affiliation(s)
- Bin Xiao
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ruiming Zhao
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Nan Wang
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Juan Zhang
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoyun Sun
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fengchun Huang
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ailiang Chen
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
5
|
Yan S, Lan H, Wu Z, Sun Y, Tu M, Pan D. Cleavable molecular beacon-based loop-mediated isothermal amplification assay for the detection of adulterated chicken in meat. Anal Bioanal Chem 2022; 414:8081-8091. [PMID: 36152037 DOI: 10.1007/s00216-022-04342-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/30/2022]
Abstract
A simple, sensitive, specific and fast method based on the loop-mediated isothermal amplification (LAMP) technique and cleavable molecular beacon (CMB) was developed for chicken authentication detection. LAMP and CMB were used for DNA amplification and amplicon analysis, respectively. Targeting the mitochondrial cytochrome b gene of chickens, five primers and one CMB probe were designed, and their specificity was validated against nine other animal species. The structure of CMB and concentrations of dNTPs, MgSO4, betaine, RNase H2, primers and CMB were optimized. The CMB-LAMP assay was completed within 17 min, and its limit of detection for chicken DNA was 1.5 pg μL-1. Chicken adulteration as low as 0.5% was detected in beef, and no cross-reactivity was observed. Finally, this assay was successfully applied to 20 commercial meat products. When combined with our developed DNA extraction method (the extraction time was 1 min: lysis for 10 s, washing for 20 s and elution for 30 s), the entire process (from DNA extraction to results analysis) was able to be completed within 20 min, which is at least 10 min shorter than other LAMP-based methods. Our method showed great potential for the on-site detection of chicken adulteration in meat.
Collapse
Affiliation(s)
- Song Yan
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China.,Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province and College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315800, China
| | - Hangzhen Lan
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China. .,Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province and College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315800, China.
| | - Zhen Wu
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China.,Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province and College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315800, China
| | - Yangying Sun
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China.,Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province and College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315800, China
| | - Maolin Tu
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China.,Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province and College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315800, China
| | - Daodong Pan
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China. .,Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province and College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315800, China. .,National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, 330022, Jiangxi, China.
| |
Collapse
|
6
|
Wang Y, Wang B, Wang D. Development of a Ladder-Shape Melting Temperature Isothermal Amplification Assay for Detection of Duck Adulteration in Beef. J Food Prot 2022; 85:1203-1209. [PMID: 35687733 DOI: 10.4315/jfp-22-015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/28/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT Ladder-shape melting temperature isothermal amplification (LMTIA) is a newly developed technology, and the objective of this study was to establish its effectiveness for detection of duck adulteration in beef. LMTIA primers were designed with the prolactin receptor gene of Anas platyrhynchos as the target. The LMTIA reaction system was optimized, and its performance was compared with that of the loop-mediated isothermal amplification (LAMP) assay in terms of specificity, sensitivity, and limit of detection (LOD). Our results showed that the LMTIA assay was able to specifically detect 10 ng of genomic DNAs (gDNAs) of A. platyrhynchos, without detecting 10 ng of gDNAs of Bos taurus, Sus scrofa, Gallus gallus, Capra hircus, Felis catus, and Canis lupus familiaris. The sensitivity of the LMTIA assay was 1 ng of gDNAs of A. platyrhynchos; it was able to detect duck adulteration in beef with a 0.1% LOD. Although the LAMP assay could not clearly distinguish A. platyrhynchos from G. gallus, it had a sensitivity of 10 ng of gDNAs of A. platyrhynchos and a LOD of 1% duck adulteration in beef. This study may help facilitate the surveillance of commercial adulteration of beef with duck meat. HIGHLIGHTS
Collapse
Affiliation(s)
- Yongzhen Wang
- Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety of Henan Province, Xuchang University, Xuchang 461000, People's Republic of China
| | - Borui Wang
- School of Food and Biological Engineering, Henan University of Science and Technology, Luoyang 471000, People's Republic of China
| | - Deguo Wang
- Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety of Henan Province, Xuchang University, Xuchang 461000, People's Republic of China
| |
Collapse
|
7
|
Girish PS, Kumari A, Gireesh‐Babu P, Karabasanavar NS, Raja B, Ramakrishna C, Barbuddhe SB. Alkaline lysis‐loop mediated isothermal amplification assay for rapid and on‐site authentication of buffalo (
Bubalus bubalis
) meat. J Food Saf 2021. [DOI: 10.1111/jfs.12955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Patil S. Girish
- ICAR – National Research Centre on Meat Hyderabad Telangana State India
| | - Aparana Kumari
- ICAR – National Research Centre on Meat Hyderabad Telangana State India
| | | | - Nagappa S. Karabasanavar
- Department of Veterinary Public Health & Epidemiology Veterinary College, Karnataka Veterinary Animal and Fisheries Sciences University Hassan Karnataka India
| | | | | | | |
Collapse
|
8
|
Kumar Y, Narsaiah K. Rapid point-of-care testing methods/devices for meat species identification: A review. Compr Rev Food Sci Food Saf 2020; 20:900-923. [PMID: 33443804 DOI: 10.1111/1541-4337.12674] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/30/2020] [Accepted: 10/25/2020] [Indexed: 12/15/2022]
Abstract
The authentication of animal species is an important issue due to an increasing trend of adulteration and mislabeling of animal species in processed meat products. Polymerase chain reaction is the most sensitive and specific technique for nucleic acid-based animal species detection. However, it is a time-consuming technique that requires costly thermocyclers and sophisticated labs. In recent times, there is a need of on-site detection by point-of-care (POC) testing methods and devices under low-resource settings. These POC devices must be affordable, sensitive, specific, user-friendly, rapid and robust, equipment free, and delivered to the end users. POC devices should also confirm the concept of micro total analysis system. This review discusses POC testing methods and devices that have been developed for meat species identification. Recent developments in lateral flow assay-based devices for the identification of animal species in meat products are also reviewed. Advancements in increasing the efficiency of lateral flow detection are also discussed.
Collapse
Affiliation(s)
- Yogesh Kumar
- Department of Agricultural Structures and Environmental Control, ICAR-Central Institute of Post-Harvest Engineering and Technology (CIPHET), Ludhiana, India
| | - Kairam Narsaiah
- Department of Agricultural Structures and Environmental Control, ICAR-Central Institute of Post-Harvest Engineering and Technology (CIPHET), Ludhiana, India
| |
Collapse
|
9
|
Wang F, Wu X, Xu D, Chen L, Ji L. Identification of Chicken-Derived Ingredients as Adulterants Using Loop-Mediated Isothermal Amplification. J Food Prot 2020; 83:1175-1180. [PMID: 32084666 DOI: 10.4315/jfp-19-542] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/21/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT Meat adulteration has recently become an issue of increasing public concern. In addition to posing a health risk to consumers with metabolic disorders or allergies, meat adulteration has triggered many economic and religious problems. Chicken meat is a common adulterant in nonchicken products because of its low cost and ready availability. A loop-mediated isothermal amplification assay coupled with a lateral flow dipstick was developed to identify chicken in nonchicken products. We optimized the amplification time and temperature to obtain the best result. This assay is performed at a constant temperature in a water bath and can be completed in 1 h. No precision instruments or equipment are needed. With a one-step reaction and easy operation, the testing cost is low. This method is highly sensitive and specific and is a valuable method for identifying chicken in nonchicken products to meets the requirements of on-site inspection and detection. HIGHLIGHTS
Collapse
Affiliation(s)
- Feng Wang
- Huzou Center Blood Station, 412 Fenghuang Road, Huzhou, Zhejiang 313000, People's Republic of China
| | - Xiaofang Wu
- Huzhou Center for Disease Control and Prevention, 999 Changxing Road, Huzhou, Zhejiang 313000, People's Republic of China
| | - Deshun Xu
- Huzhou Center for Disease Control and Prevention, 999 Changxing Road, Huzhou, Zhejiang 313000, People's Republic of China
| | - Liping Chen
- Huzhou Center for Disease Control and Prevention, 999 Changxing Road, Huzhou, Zhejiang 313000, People's Republic of China
| | - Lei Ji
- Huzhou Center for Disease Control and Prevention, 999 Changxing Road, Huzhou, Zhejiang 313000, People's Republic of China
| |
Collapse
|
10
|
Wang Y, Zhu K, Wang D. Visual detection of donkey-derived ingredients by loop-mediated isothermal amplification with 4-(2-pyridylazo)-resorcinol sodium salt. CYTA - JOURNAL OF FOOD 2020. [DOI: 10.1080/19476337.2020.1740326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Yongzhen Wang
- Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety of Henan Province, Xuchang University, Xuchang, China
| | - Kai Zhu
- Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety of Henan Province, Xuchang University, Xuchang, China
- School of Food and Biological Engineering, Henan University of Science and Technology, Luoyang, China
| | - Deguo Wang
- Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety of Henan Province, Xuchang University, Xuchang, China
| |
Collapse
|
11
|
Wang X, Yan C, Wei M, Shi C, Niu S, Ma C. On-site Method for Beef Detection Based on Strand Exchange Amplification. ANAL SCI 2018; 35:337-341. [PMID: 30449835 DOI: 10.2116/analsci.18p425] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Meat screening plays a significant role in human health and religion. But the identification methods for beef were little reported. In this work, a simple colorimetric method based on denaturation bubble-mediated strand exchange amplification (SEA) was developed for the rapid and sensitive identification of beef. The whole strategy was performed on a portable metal bath and the distinguishable color between positive and negative controls was observed directly by the naked eyes. The feasibility using crude extraction samples by a heating treatment in PBS for 2 min was evaluated in duck spiked by beef. The result demonstrated that the developed method could identify as low as 1% (w/w) beef/duck within 50 min. Meanwhile, the results showed the method had a good repeatability and specificity. Therefore, this assay allows for the rapid, sensitive, specific detection of beef, and can be recommended as an effective, promising strategy for on-site meat identification.
Collapse
Affiliation(s)
- Xuejiao Wang
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Chemistry and Molecular Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology
| | - Chunyu Yan
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Chemistry and Molecular Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology
| | - Manman Wei
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Chemistry and Molecular Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology
| | - Chao Shi
- College of Life Sciences, Qingdao University
| | - Shuyan Niu
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Chemistry and Molecular Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology
| | - Cuiping Ma
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Chemistry and Molecular Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology
| |
Collapse
|
12
|
Kumar Y, Bansal S, Jaiswal P. Loop-Mediated Isothermal Amplification (LAMP): A Rapid and Sensitive Tool for Quality Assessment of Meat Products. Compr Rev Food Sci Food Saf 2017; 16:1359-1378. [DOI: 10.1111/1541-4337.12309] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/16/2017] [Accepted: 08/16/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Yogesh Kumar
- ICAR-Central Inst. of Post-Harvest Engineering and Technology (CIPHET); Ludhiana India
| | - Sangita Bansal
- ICAR-Central Inst. of Post-Harvest Engineering and Technology (CIPHET); Ludhiana India
| | - Pranita Jaiswal
- ICAR-Central Inst. of Post-Harvest Engineering and Technology (CIPHET); Ludhiana India
| |
Collapse
|