1
|
Jain S, Lamba BY, Dubey SK. Recent advancements in the sensors for food analysis to detect gluten: A mini-review [2019-2023]. Food Chem 2024; 449:139204. [PMID: 38613992 DOI: 10.1016/j.foodchem.2024.139204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/24/2024] [Accepted: 03/29/2024] [Indexed: 04/15/2024]
Abstract
People with celiac disease or gluten sensitivity may experience an immune reaction to the protein called gluten, which is present in wheat, barley, and rye. A strict gluten-free diet is the sole cure for these ailments. There are chances of food fraud about the claim of being gluten-free food items. As a result, there is a rising need for trustworthy and precise ways to identify gluten. There are many methods to detect gluten in food samples viz., enzyme-linked immunosorbent assay 1 Surface plasmon resonance (SPR), Electrochemical sensors, Fluorescence-based sensors, etc. The use of sensors is one of the most promising methods for gluten detection. For detecting gluten, a variety of sensors, including optical, electrochemical, and biosensors, have been developed with different limits of detection and sensitivity. The present review reports the recent advancements (2019-2023) in the development of sensors for gluten detection in food. We may conclude that sensitivity and limit of detection are not related to the type of sensor used (aptamer or antibody-based), however, there are advancements, with the year, on the simplicity of the material used like paper-based sensors and paradigm shift to reagent free sensors by the spectral analysis. Also, recent work shows the potential of IoT-based studies for gluten detection.
Collapse
Affiliation(s)
- Sapna Jain
- Applied Science Cluster (Chemistry), School of Advanced Engineering, UPES, Dehradun 248007, India.
| | - Bhawna Yadav Lamba
- Applied Science Cluster (Chemistry), School of Advanced Engineering, UPES, Dehradun 248007, India
| | - Sanjeev Kumar Dubey
- Applied Science Cluster (Chemistry), School of Advanced Engineering, UPES, Dehradun 248007, India
| |
Collapse
|
2
|
Salman F, Zengin A, Çelik Kazici H. Simple detection of gluten in commercial gluten-containing samples with a novel nanoflower electrosensor made of molybdenum disulfide with comparison of the ELISA method. J Food Sci 2024; 89:2747-2760. [PMID: 38563096 DOI: 10.1111/1750-3841.17043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/17/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
In this study, a new electrochemical sensor based on molybdenum disulfide (MoS2) nanoflowers/glassy carbon electrode (GCE was created for the sensitive detection of gluten. The prepared nanocatalysts were characterized using scanning electron microscopy with energy dispersive spectroscopy, x-ray diffraction, and x-ray photoelectron spectroscopy. The effects of the prepared nanocatalysts, pH value, and dropping amounts on the results were examined in detail. The electrochemical performance of the developed sensor (MoS2 nanoflowers/GCE) was then evaluated using differential pulse voltammetry, and the sensor was found to have significant electrochemical activity against gluten. A substantial linear connection was observed in the range of 0.5-100 ppm of gluten concentration under optimum experimental circumstances, and the detection limit between peak current and gluten concentration was determined as 1.16 ppm. The findings showed that the MoS2 nanoflowers/GCE gluten sensor has exceptional selectivity and stability. Finally, the generated electrochemical sensor was effectively utilized for gluten detection in commercial gluten-containing materials with a detection limit of 0.1652 ppm. Thus, the developed MoS2 nanoflowers/GCE sensor offers a potential method for the detection of other molecules and is a promising candidate for gluten detection in commercial samples.
Collapse
Affiliation(s)
- Fırat Salman
- Department of Chemical Engineering, Faculty of Engineering, Van Yüzüncü Yıl University, Van, Turkey
| | - Adem Zengin
- Department of Chemistry, Faculty of Science, Van Yüzüncü Yıl University, Van, Turkey
| | - Hilal Çelik Kazici
- Department of Chemistry, Faculty of Science, Van Yüzüncü Yıl University, Van, Turkey
| |
Collapse
|
3
|
Hu J, Xu X, Xu L, Kuang H, Xu C, Guo L. Gold nanoparticle-based lateral flow immunoassay for the rapid and on-site detection of wheat allergen in milk. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
4
|
Benítez M, Zubiate P, Socorro-Leránoz A, Matías I. Lossy mode resonance-based optical immunosensor towards detecting gliadin in aqueous solutions. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
5
|
Zhu X, Zhao XH, Zhang Q, Zhang N, Soladoye OP, Aluko RE, Zhang Y, Fu Y. How does a celiac iceberg really float? The relationship between celiac disease and gluten. Crit Rev Food Sci Nutr 2022; 63:9233-9261. [PMID: 35435771 DOI: 10.1080/10408398.2022.2064811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Celiac disease (CD) is an autoimmune intestinal disease caused by intolerance of genetically susceptible individuals after intake of gluten-containing grains (including wheat, barley, etc.) and their products. Currently, CD, with "iceberg" characteristics, affects a large population and is distributed over a wide range of individuals. This present review summarizes the latest research progress on the relationship between CD and gluten. Furthermore, the structure and function of gluten peptides related to CD, gluten detection methods, the effects of processing on gluten and gluten-free diets are emphatically reviewed. In addition, the current limitations in CD research are also discussed. The present work facilitates a comprehensive understanding of CD as well as gluten, which can provide a theoretical reference for future research.
Collapse
Affiliation(s)
- Xiaoxue Zhu
- College of Food Science, Southwest University, Chongqing, China
- National Demonstration Center for Experimental Food Science and Technology Education, Southwest University, Chongqing, China
| | - Xin-Huai Zhao
- School of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, P. R. China
| | - Qiang Zhang
- School of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, P. R. China
| | - Na Zhang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Olugbenga P Soladoye
- Agriculture and Agri-Food Canada, Government of Canada, Lacombe Research and Development Centre, Lacombe, Alberta, Canada
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing, China
- National Demonstration Center for Experimental Food Science and Technology Education, Southwest University, Chongqing, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing, China
- National Demonstration Center for Experimental Food Science and Technology Education, Southwest University, Chongqing, China
| |
Collapse
|
6
|
Zhang X, Qiao C, Fu S, Jiao Y, Liu Y. DNA-based qualitative and quantitative identification of bovine whey powder in goat dairy products. J Dairy Sci 2022; 105:4749-4759. [PMID: 35450717 DOI: 10.3168/jds.2021-21618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/16/2022] [Indexed: 11/19/2022]
Abstract
As one of the main ingredients in some milk powders, whey powder is sometimes added to pure goat milk products, which causes health risks, economic fraud, and unfair competition of food industries. This study is the first to explore qualitative and quantitative methods to identify adulteration of bovine whey powder in goat dairy products based on DNA. We extracted DNA from whey powder using a modified DNA extraction method; this exhibited good quality and integrity, with purity of 1.53 to 1.75 and concentration of 122 to 179 ng/μL. Conventional PCR and real-time PCR were compared for qualitative detection of bovine whey powder; real-time PCR demonstrated sensitivity of 0.01 ng/μL, which was higher than the 0.05 ng/μL detected by the conventional PCR method. Furthermore, real-time PCR was conducted for DNA quantitative detection, with good linearity (R2 = 0.9858) obtained for bovine whey powder contents from 0.1% to 30%. Relative error decreased with increase of the mixing proportion of whey powder; the coefficient of variation above 0.1% of the mixing ratio was close to or less than 5%; and the relative standard deviation of repeatability results was less than 5%. Considering the economic costs of testing, conventional PCR could be performed first, and samples with obvious intentional adulteration detected can be further accurately quantified by real-time PCR. Overall, this research provides a realistic and effective method for qualitative and quantitative identification of bovine whey powder in goat dairy products, thus laying a good foundation for verification of goat dairy product label claims and industrial control.
Collapse
Affiliation(s)
- Xueru Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Chunyan Qiao
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Shangchen Fu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Yang Jiao
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Yongfeng Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China.
| |
Collapse
|
7
|
Patterning Large-Scale Nanostructured Microarrays on Coverslip for Sensitive Plasmonic Detection of Aqueous Gliadin Traces. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10020038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
User-friendly devices for detecting low gliadin content in commercial foods are of extreme importance for people with gluten diseases. With this concern, the present work proposes a rapid and sensitive optical nanostructured microarrays platform for the detection of gliadin using specific anti-gliadin IgG antibodies immobilized on annealed gold nanostructures (AuNPs) obtained after the high annealing process (550 °C) of gold thin films evaporated on commercial glass coverslips. Localized Surface Plasmon Resonance (LSPR) immunosensing of gliadin in the range of 0.1 ppm to 1000 ppm is successfully achieved. In addition, the biofunctionalization protocol was used for gluten screening in five food complex products.
Collapse
|
8
|
Recent progress in analytical method development to ensure the safety of gluten-free foods for celiac disease patients. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.103114] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|