1
|
Chen H, Han X, Zhu C, Du B, Tan L, He R, Shen M, Liu LY, Zeng L. Identification of Fluorescent Brighteners as Another Emerging Class of Abundant, Ubiquitous Pollutants in the Indoor Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10131-10140. [PMID: 35786931 DOI: 10.1021/acs.est.2c03082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fluorescent brighteners (FBs) are extensively used as important chemical additives in multiple industrial fields worldwide. The history of the use of global FBs spans over 60 years, but knowledge on their environmental occurrence and risks remains largely unknown. Here, we screened indoor dust and hand wipes from South China for a broad suite of 17 emerging FBs using a new comprehensive analytical method. All 17 FBs were detected in the indoor environment for the first time, most of them having been rarely investigated or never reported in prior environmental studies. Ionic FBs were found to be more abundant than nonionic ones. The median total concentrations of the 17 detectable FBs reached 11,000 ng/g in indoor dust and 2640 ng/m2 in hand wipes, comparable to or higher than those of well-known indoor pollutants. Human exposure assessment indicated that hand-to-mouth contact is a significant pathway for exposure to FBs, with a comparable contribution to that of dust ingestion. Most of the newly identified FBs are predicted to have persistent, bioaccumulative, or toxic properties. Our work demonstrates that FBs are another class of highly abundant, hazardous, and ubiquitous indoor pollutants that have been overlooked for decades and points to an emerging concern.
Collapse
Affiliation(s)
- Hui Chen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Xu Han
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Chunyou Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Bibai Du
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Lei Tan
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Rong He
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Mingjie Shen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Liang-Ying Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Lixi Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| |
Collapse
|
2
|
Chen Y, Chen Q, Wei X. Separable surface enhanced Raman spectroscopy sensor platformed by HPTLC for facile screening of malachite green in fish. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
3
|
Tozar T, Boni M, Andrei IR, Pascu ML, Staicu A. High performance thin layer chromatography-densitometry method based on picosecond laser-induced fluorescence for the analysis of thioridazine and its photoproducts. J Chromatogr A 2021; 1655:462488. [PMID: 34474191 DOI: 10.1016/j.chroma.2021.462488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022]
Abstract
A densitometry method based on steady-state and time-resolved fluorescence assessments for thioridazine and its photoproducts applied on HPTLC plates has been developed. The excitation source was a picosecond diode laser emitting at 375 nm. This method was used for the analysis of the photoproducts resulted from thioridazine irradiation with 266 nm nanosecond-pulsed laser. The validation of the developed method was performed for thioridazine in terms of linearity, precision, limits of detection and quantification. Furthermore, analysis of the photoproducts of irradiated thioridazine was performed by steady-state and time-resolved fluorescence. The fluorescence spectra and fluorescence lifetime of each photoproduct were obtained and the horizontal chromatograms of fluorescence maxima were generated.
Collapse
Affiliation(s)
- Tatiana Tozar
- National Institute for Laser, Plasma, and Radiation Physics, Lasers Department, 409 Atomistilor, 077125 Magurele, Ilfov, Romania
| | - Mihai Boni
- National Institute for Laser, Plasma, and Radiation Physics, Lasers Department, 409 Atomistilor, 077125 Magurele, Ilfov, Romania
| | - Ionut R Andrei
- National Institute for Laser, Plasma, and Radiation Physics, Lasers Department, 409 Atomistilor, 077125 Magurele, Ilfov, Romania
| | - Mihail L Pascu
- National Institute for Laser, Plasma, and Radiation Physics, Lasers Department, 409 Atomistilor, 077125 Magurele, Ilfov, Romania
| | - Angela Staicu
- National Institute for Laser, Plasma, and Radiation Physics, Lasers Department, 409 Atomistilor, 077125 Magurele, Ilfov, Romania.
| |
Collapse
|