1
|
Schobel SA, Gann ER, Unselt D, Grey SF, Lisboa FA, Upadhyay MM, Rouse M, Tallowin S, Be NA, Zhang X, Dalgard CL, Wilkerson MD, Hauskrecht M, Badylak SF, Zamora R, Vodovotz Y, Potter BK, Davis TA, Elster EA. The influence of microbial colonization on inflammatory versus pro-healing trajectories in combat extremity wounds. Sci Rep 2024; 14:5006. [PMID: 38438404 PMCID: PMC10912443 DOI: 10.1038/s41598-024-52479-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 01/19/2024] [Indexed: 03/06/2024] Open
Abstract
A combination of improved body armor, medical transportation, and treatment has led to the increased survival of warfighters from combat extremity injuries predominantly caused by blasts in modern conflicts. Despite advances, a high rate of complications such as wound infections, wound failure, amputations, and a decreased quality of life exist. To study the molecular underpinnings of wound failure, wound tissue biopsies from combat extremity injuries had RNA extracted and sequenced. Wounds were classified by colonization (colonized vs. non-colonized) and outcome (healed vs. failed) status. Differences in gene expression were investigated between timepoints at a gene level, and longitudinally by multi-gene networks, inferred proportions of immune cells, and expression of healing-related functions. Differences between wound outcomes in colonized wounds were more apparent than in non-colonized wounds. Colonized/healed wounds appeared able to mount an adaptive immune response to infection and progress beyond the inflammatory stage of healing, while colonized/failed wounds did not. Although, both colonized and non-colonized failed wounds showed increasing inferred immune and inflammatory programs, non-colonized/failed wounds progressed beyond the inflammatory stage, suggesting different mechanisms of failure dependent on colonization status. Overall, these data reveal gene expression profile differences in healing wounds that may be utilized to improve clinical treatment paradigms.
Collapse
Affiliation(s)
- Seth A Schobel
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
- Uniformed Services University (USU) Surgical Critical Care Initiative (SC2i), Bethesda, MD, USA.
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA.
| | - Eric R Gann
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Uniformed Services University (USU) Surgical Critical Care Initiative (SC2i), Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Desiree Unselt
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Uniformed Services University (USU) Surgical Critical Care Initiative (SC2i), Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
- Q2 Solutions, Durham, NC, USA
| | - Scott F Grey
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Uniformed Services University (USU) Surgical Critical Care Initiative (SC2i), Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Felipe A Lisboa
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Uniformed Services University (USU) Surgical Critical Care Initiative (SC2i), Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Meenu M Upadhyay
- Uniformed Services University (USU) Surgical Critical Care Initiative (SC2i), Bethesda, MD, USA
| | - Michael Rouse
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Uniformed Services University (USU) Surgical Critical Care Initiative (SC2i), Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Simon Tallowin
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Uniformed Services University (USU) Surgical Critical Care Initiative (SC2i), Bethesda, MD, USA
- Academic Department of Military Surgery and Trauma, Royal Centre for Defence Medicine, Birmingham, UK
| | - Nicholas A Be
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Xijun Zhang
- Uniformed Services University (USU) The American Genome Center (TAGC), Bethesda, MD, USA
| | - Clifton L Dalgard
- Uniformed Services University (USU) The American Genome Center (TAGC), Bethesda, MD, USA
- Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Matthew D Wilkerson
- Uniformed Services University (USU) The American Genome Center (TAGC), Bethesda, MD, USA
- Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Milos Hauskrecht
- Department of Computer Science, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephen F Badylak
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ruben Zamora
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Benjamin K Potter
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Uniformed Services University (USU) Surgical Critical Care Initiative (SC2i), Bethesda, MD, USA
- Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Thomas A Davis
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Eric A Elster
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Uniformed Services University (USU) Surgical Critical Care Initiative (SC2i), Bethesda, MD, USA
- Walter Reed National Military Medical Center, Bethesda, MD, USA
| |
Collapse
|
3
|
Qureshi AT, Dey D, Sanders EM, Seavey JG, Tomasino AM, Moss K, Wheatley B, Cholok D, Loder S, Li J, Levi B, Davis TA. Inhibition of Mammalian Target of Rapamycin Signaling with Rapamycin Prevents Trauma-Induced Heterotopic Ossification. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2536-2545. [PMID: 29029772 DOI: 10.1016/j.ajpath.2017.07.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/18/2017] [Accepted: 07/26/2017] [Indexed: 12/27/2022]
Abstract
A pressing clinical need exists for 63% to 65% of combat-wounded service members and 11% to 20% of civilians who develop heterotopic ossification (HO) after blast-related extremity injury and traumatic injuries, respectively. The mammalian target of rapamycin pathway is a central cellular sensor of injury. We evaluated the prophylactic effects of rapamycin, a selective inhibitor of mammalian target of rapamycin signaling, on HO formation in a rat model of blast-related, polytraumatic extremity injury. Rapamycin was administered intraperitoneally daily for 14 days at 0.5 mg/kg or 2.5 mg/kg. Ectopic bone formation was monitored by micro-computed tomography and confirmed by histologic examination. Connective tissue progenitor cells, platelet-derived growth factor receptor-α-positive cells, and α-smooth muscle actin-positive blood vessels were assayed at postoperative day 7 by colony formation and immunofluorescence. Early gene expression changes were determined by low-density microarray. There was significant attenuation of 1) total new bone and soft tissue ectopic bone with 0.5 mg/kg (38.5% and 14.7%) and 2.5 mg/kg rapamycin (90.3% and 82.9%), respectively, 2) connective tissue progenitor cells, 3) platelet-derived growth factor receptor-α-positive cells, 4) α-smooth muscle actin-positive blood vessels, and 5) of key extracellular matrix remodeling (CD44, Col1a1, integrins), osteogenesis (Sp7, Runx2, Bmp2), inflammation (Cxcl5, 10, IL6, Ccl2), and angiogenesis (Angpt2) genes. No wound healing complications were noted. Our data demonstrate the efficacy of rapamycin in inhibiting blast trauma-induced HO by a multipronged mechanism.
Collapse
Affiliation(s)
- Ammar T Qureshi
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland
| | - Devaveena Dey
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland
| | - Erin M Sanders
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland
| | - Jonathan G Seavey
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland; Department of Surgery, Uniformed Services University and the Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Allison M Tomasino
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland
| | - Kaitlyn Moss
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland
| | - Benjamin Wheatley
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland; Department of Surgery, Uniformed Services University and the Walter Reed National Military Medical Center, Bethesda, Maryland
| | - David Cholok
- Department of Surgery, University of Michigan Health Systems, Ann Arbor, Michigan
| | - Shawn Loder
- Department of Surgery, University of Michigan Health Systems, Ann Arbor, Michigan
| | - John Li
- Department of Surgery, University of Michigan Health Systems, Ann Arbor, Michigan
| | - Benjamin Levi
- Department of Surgery, University of Michigan Health Systems, Ann Arbor, Michigan
| | - Thomas A Davis
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland; Department of Surgery, Uniformed Services University and the Walter Reed National Military Medical Center, Bethesda, Maryland.
| |
Collapse
|