1
|
Sopilidis A, Stamatopoulos V, Giannatos V, Taraviras G, Panagopoulos A, Taraviras S. Integrating Modern Technologies into Traditional Anterior Cruciate Ligament Tissue Engineering. Bioengineering (Basel) 2025; 12:39. [PMID: 39851313 PMCID: PMC11762506 DOI: 10.3390/bioengineering12010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/01/2025] [Accepted: 01/04/2025] [Indexed: 01/26/2025] Open
Abstract
The anterior cruciate ligament (ACL) is one of the most injured ligaments, with approximately 100,000 ACL reconstructions taking place annually in the United States. In order to successfully manage ACL rupture, it is of the utmost importance to understand the anatomy, unique physiology, and biomechanics of the ACL, as well as the injury mechanisms and healing capacity. Currently, the "gold standard" for the treatment of ACL ruptures is surgical reconstruction, particularly for young patients or athletes expecting to return to pivoting sports. Although ACL reconstruction boasts a high success rate, patients may face different, serious post-operative complications, depending on the type of graft and technique used in each one of them. Tissue engineering is a multidisciplinary field that could contribute to the formation of a tissue-engineered ACL graft manufactured by a combination of the appropriate stem-cell type, a suitable scaffold, and specific growth factors, combined with mechanical stimuli. In this review, we discuss the aspects that constitute the creation of a successful tissue-engineered graft while also underlining the current drawbacks that arise for each issue. Finally, we highlight the benefits of incorporating new technologies like artificial intelligence and machine learning that could revolutionize tissue engineering.
Collapse
Affiliation(s)
- Aris Sopilidis
- Department of Physiology, School of Medicine, University of Patras, Asklepiou Street 1, Rio, 26504 Patras, Greece; (A.S.); (V.S.); (G.T.)
| | - Vasileios Stamatopoulos
- Department of Physiology, School of Medicine, University of Patras, Asklepiou Street 1, Rio, 26504 Patras, Greece; (A.S.); (V.S.); (G.T.)
| | - Vasileios Giannatos
- Department of Orthopedics and Traumatology, Sports Medicine Department, University Hospital of Patras, Asklepiou Street 1, Rio, 26504 Patras, Greece; (V.G.); (A.P.)
| | - Georgios Taraviras
- Department of Physiology, School of Medicine, University of Patras, Asklepiou Street 1, Rio, 26504 Patras, Greece; (A.S.); (V.S.); (G.T.)
| | - Andreas Panagopoulos
- Department of Orthopedics and Traumatology, Sports Medicine Department, University Hospital of Patras, Asklepiou Street 1, Rio, 26504 Patras, Greece; (V.G.); (A.P.)
| | - Stavros Taraviras
- Department of Physiology, School of Medicine, University of Patras, Asklepiou Street 1, Rio, 26504 Patras, Greece; (A.S.); (V.S.); (G.T.)
| |
Collapse
|
2
|
Trapana J, Weinerman J, Lee D, Sedani A, Constantinescu D, Best TM, Hornicek FJ, Hare JM. Cell-based therapy in the treatment of musculoskeletal diseases. Stem Cells Transl Med 2024; 13:959-978. [PMID: 39226104 PMCID: PMC11465182 DOI: 10.1093/stcltm/szae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/21/2024] [Indexed: 09/04/2024] Open
Abstract
A limited number of tissues can spontaneously regenerate following injury, and even fewer can regenerate to a state comparable to mature, healthy adult tissue. Mesenchymal stem cells (MSCs) were first described in the 1960s-1970s by Friedenstein et al as a small population of bone marrow cells with osteogenic potential and abilities to differentiate into chondrocytes. In 1991, Arnold Caplan coined the term "mesenchymal cells" after identifying these cells as a theoretical precursor to bone, cartilage, tendon, ligament, marrow stroma, adipocyte, dermis, muscle, and connective tissues. MSCs are derived from periosteum, fat, and muscle. Another attractive property of MSCs is their immunoregulatory and regenerative properties, which result from crosstalk with their microenvironment and components of the innate immune system. Collectively, these properties make MSCs potentially attractive for various therapeutic purposes. MSCs offer potential in sports medicine, aiding in muscle recovery, meniscal tears, and tendon and ligament injuries. In joint disease, MSCs have the potential for chondrogenesis and reversing the effects of osteoarthritis. MSCs have also demonstrated potential application to the treatment of degenerative disc disease of the cervical, thoracic, and lumbar spine.
Collapse
Affiliation(s)
- Justin Trapana
- Department of Orthopaedics, University of Miami Miller School of Medicine, Miami, United States
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, United States
| | - Jonathan Weinerman
- Department of Orthopaedics, University of Miami Miller School of Medicine, Miami, United States
| | - Danny Lee
- Department of Orthopaedics, University of Miami Miller School of Medicine, Miami, United States
| | - Anil Sedani
- Department of Orthopaedics, University of Miami Miller School of Medicine, Miami, United States
| | - David Constantinescu
- Department of Orthopaedics, University of Miami Miller School of Medicine, Miami, United States
| | - Thomas M Best
- Department of Orthopaedics, University of Miami Miller School of Medicine, Miami, United States
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, United States
| | - Francis J Hornicek
- Department of Orthopaedics, University of Miami Miller School of Medicine, Miami, United States
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, United States
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, United States
| |
Collapse
|
3
|
Stehle M, Amini M, Venkatesan JK, Liu W, Wang D, Nguyen TN, Leroux A, Madry H, Migonney V, Cucchiarini M. Commitment of human mesenchymal stromal cells towards ACL fibroblast differentiation upon rAAV-mediated FGF-2 and TGF-β overexpression using pNaSS-grafted PCL films. Biotechnol Bioeng 2024; 121:3196-3210. [PMID: 38877726 DOI: 10.1002/bit.28773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/29/2024] [Accepted: 05/28/2024] [Indexed: 06/16/2024]
Abstract
Despite various clinical options, human anterior cruciate ligament (ACL) lesions do not fully heal. Biomaterial-guided gene therapy using recombinant adeno-associated virus (rAAV) vectors may improve the intrinsic mechanisms of ACL repair. Here, we examined whether poly(sodium styrene sulfonate)-grafted poly(ε-caprolactone) (pNaSS-grafted PCL) films can deliver rAAV vectors coding for the reparative basic fibroblast growth factor (FGF-2) and transforming growth factor beta (TGF-β) in human mesenchymal stromal cells (hMSCs) as a source of implantable cells in ACL lesions. Efficient and sustained rAAV-mediated reporter (red fluorescent protein) and therapeutic (FGF-2 and TGF-β) gene overexpression was achieved in the cells for at least 21 days in particular with pNaSS-grafted PCL films relative to all other conditions (up to 5.2-fold difference). Expression of FGF-2 and TGF-β mediated by rAAV using PCL films increased the levels of cell proliferation, the DNA contents, and the deposition of proteoglycans and of type-I and -III collagen (up to 2.9-fold difference) over time in the cells with higher levels of transcription factor expression (Mohawk, Scleraxis) (up to 1.9-fold difference), without activation of inflammatory tumor necrosis alpha especially when using pNaSS-grafted PCL films compared with the controls. Overall, the effects mediated by TGF-β were higher than those promoted by FGF-2, possibly due to higher levels of gene expression achieved upon rAAV gene transfer. This study shows the potential of using functionalized PCL films to apply rAAV vectors for ACL repair.
Collapse
Affiliation(s)
- Meret Stehle
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Saarland, Germany
| | - Mahnaz Amini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Saarland, Germany
| | - Jagadeesh K Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Saarland, Germany
| | - Wei Liu
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Saarland, Germany
| | - Dan Wang
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Saarland, Germany
| | - Tuan N Nguyen
- LBPS/CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, Villetaneuse, France
| | - Amélie Leroux
- LBPS/CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, Villetaneuse, France
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Saarland, Germany
| | - Véronique Migonney
- LBPS/CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, Villetaneuse, France
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Saarland, Germany
| |
Collapse
|
4
|
Nelson PA, George T, Bowen E, Sheean AJ, Bedi A. An Update on Orthobiologics: Cautious Optimism. Am J Sports Med 2024; 52:242-257. [PMID: 38164688 DOI: 10.1177/03635465231192473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Orthobiologics are rapidly growing in use given their potential to augment healing for multiple musculoskeletal conditions. Orthobiologics consist of a variety of treatments including platelet-rich plasma and stem cells that provide conceptual appeal in providing local delivery of growth factors and inflammation modulation. The lack of standardization in nomenclature and applications within the literature has led to a paucity of high-quality evidence to support their frequent use. The purpose of this review was to describe the current landscape of orthobiologics and the most recent evidence regarding their use.
Collapse
Affiliation(s)
- Patrick A Nelson
- University of Chicago Department of Orthopedic Surgery, Chicago, Illinois, USA
| | - Tom George
- Northshore University Healthcare System, Evanston, Illinois, USA
| | - Edward Bowen
- Weill Cornell Medicine, New York City, New York, USA
| | - Andrew J Sheean
- San Antonio Military Medical Center, Department of Orthopedic Surgery, San Antonio, Texas, USA
| | - Asheesh Bedi
- Northshore University Healthcare System, Evanston, Illinois, USA
| |
Collapse
|
5
|
Pineda-Cortel MR, Suarez C, Cabrera JT, Daya M, Bernardo-Bueno MM, Vergara RC, Villavieja A. Biotherapeutic Applications of Platelet-Rich Plasma in Regenerative Medicine. Tissue Eng Regen Med 2023; 20:811-828. [PMID: 37651090 PMCID: PMC10519926 DOI: 10.1007/s13770-023-00560-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Platelet-rich plasma (PRP), a blood-based product containing platelets and growth factors, is being utilized to treat numerous non-hemostatic disorders. Studies have explored the use of PRP to provide rapid repair, healing, and recovery from various injuries; some studies mentioned the effectiveness of PRP as compared with other forms of treatment like the use of hyaluronic acid. Commercially available PRP systems are available now, and each varies from one another depending on how it is prepared, thus causing variations in platelet concentration and growth factor content. These variations also implicated different therapeutic applications. METHODS The paper reviews the various applications of PRP, including factors to consider before using PRP therapy, and provides an extensive list of PRP applications. RESULTS The administration of PRP as a standalone treatment or as a co-therapy results in observed positive outcomes. However, there is a lack of standardization for PRP preparation, increasing the risks for heterogeneity and bias amongst results. CONCLUSION The use of PRP is indeed an option for regenerative therapy, but more research is needed before it can fully be recommended as a primary treatment modality.
Collapse
Affiliation(s)
- Maria Ruth Pineda-Cortel
- Department of Medical Technology, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines
- Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| | - Consuelo Suarez
- Faculty of Medicine and Surgery, University of Santo Tomas, Manila, Philippines
| | - Jan-Tyrone Cabrera
- Faculty of Medicine and Surgery, University of Santo Tomas, Manila, Philippines
| | - Minerva Daya
- Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines
| | | | - Renz Cleve Vergara
- Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| | - Adrian Villavieja
- Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines.
| |
Collapse
|
6
|
Rhatomy S, Pawitan JA, Kurniawati T, Fiolin J, Dilogo IH. Allogeneic umbilical cord mesenchymal stem cell conditioned medium (secretome) for treating posterior cruciate ligament rupture: a prospective single-arm study. EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY & TRAUMATOLOGY : ORTHOPEDIE TRAUMATOLOGIE 2023; 33:669-675. [PMID: 35699826 DOI: 10.1007/s00590-022-03278-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/20/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Outcomes of the current management of posterior cruciate ligament (PCL) rupture are still unsatisfactory. Recent literature demonstrated the efficacy of the paracrine action of mesenchymal stem cells (MSC) in ligament rupture healing. This study aimed to evaluate the outcome of arthroscopic administration of allogeneic umbilical cord-derived MSC (UC-MSC) conditioned medium (secretome) for the treatment of PCL rupture. PATIENTS AND METHODS This is a prospective study including 12 individuals with PCL rupture grade 1 or 2 who were performed arthroscopy and secretome administrations. The functional and radiologic outcome of the knee was examined one year following intervention. RESULTS Preoperatively, posterior drawer test revealed three cases of grade 2+ and nine cases of grade 1+, whereas the final follow-up revealed two cases of grade 2+ and ten cases of grade 1+ PCL rupture. At final follow-up, the mean scores for the IKDC, modified Cincinnati, and Lysholm were 90.58 ± 4.30, 90.90 ± 2.15, and 89.42 ± 3.16, respectively. The means of the serial hop tests were 90.33, 94.16, 93.66, and 95.33 for single, triple, crossover, and time hop tests, respectively. Five patients were able to resume competitive sport after an average of 25.8 weeks (25-38). The final MRI analysis revealed that six knees (50%) regained PCL continuity with low signal intensity, five knees (41.6%) returned near-normal PCL continuity, and one knee (8.3%) regained PCL continuity but with deformed outlines. CONCLUSIONS Short-term follow-up indicated that the secretome generated from allogenic UC-MSC produces excellent functional and radiographic results in grade I-II PCL rupture.
Collapse
Affiliation(s)
- Sholahuddin Rhatomy
- Sport and Adult Reconstruction Division, Department of Orthopaedic and Traumatology, Soeradji Tirtonegoro Hospital, Klaten, Indonesia.
- Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| | - Jeanne Adiwinata Pawitan
- Department of Histology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Stem Cell Medical Technology Integrated Service Unit, Cipto Mangunkusumo Central Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Stem Cell and Tissue Engineering Research Cluster Indonesian Medical Education and Research Institute (IMERI), Universitas Indonesia, Jl. Salemba Raya No. 5, Jakarta, Indonesia
| | - Trie Kurniawati
- Stem Cell Medical Technology Integrated Service Unit, Cipto Mangunkusumo Central Hospital, Faculty of Medicine, Universitas Indonesia, Jl. Diponegoro no. 5, Jakarta, Indonesia
| | - Jessica Fiolin
- Orthopaedic Surgeon of Jakarta Knee, Shoulder and Orthopaedic Sport Clinic, Pondok Indah General Hospital, Jl. Metro Duta Kav UE, Jakarta Selatan, 12310, Indonesia
| | - Ismail Hadisoebroto Dilogo
- Stem Cell Medical Technology Integrated Service Unit, Cipto Mangunkusumo Central Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Orthopaedic and Traumatology Department, Faculty of Medicine, RS DR Cipto Mangunkusumo, Jakarta, Indonesia
- Stem Cell and Tissue Engineering Research Cluster Indonesian Medical Education and Research Institute (IMERI), Universitas Indonesia, Jl. Diponegoro no 71, Jakarta, Indonesia
| |
Collapse
|
7
|
Sinkler MA, Furdock RJ, McMellen CJ, Calcei JG, Voos JE. Biologics, Stem Cells, Growth Factors, Platelet-Rich Plasma, Hemarthrosis, and Scaffolds May Enhance Anterior Cruciate Ligament Surgical Treatment. Arthroscopy 2023; 39:166-175. [PMID: 36370920 DOI: 10.1016/j.arthro.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022]
Abstract
Biologics including mesenchymal stem cells (MSCs), growth factors, and platelet-rich plasma may enhance anterior cruciate ligament (ACL) reconstruction and even ACL primary repair. In addition, hemarthrosis after acute ACL injury represents a source of biologic factors. MSCs can differentiate into both fibroblasts and osteoblasts, potentially providing a transition between the ligament or graft and bone. MSCs also produce cytokines and growth factors necessary for cartilage, bone, ligament, and tendon regeneration. MSC sources including bone marrow, synovium, adipose tissue, ACL-remnant, patellar tendon, and umbilical cord. Also, scaffolds may represent a tool for ACL tissue engineering. A scaffold should be porous, which allows cell growth and flow of nutrients and waste, should be biocompatible, and might have mechanical properties that match the native ACL. Scaffolds have the potential to deliver bioactive molecules or stem cells. Synthetic and biologically derived scaffolds are widely available. ACL reconstruction with improved outcome, ACL repair, and ACL tissue engineering are promising goals. LEVEL OF EVIDENCE: Level V, expert opinion.
Collapse
Affiliation(s)
- Margaret A Sinkler
- Department of Orthopaedic Surgery, University Hospitals Cleveland Medical Center, Cleveland Ohio, U.S.A..
| | - Ryan J Furdock
- Department of Orthopaedic Surgery, University Hospitals Cleveland Medical Center, Cleveland Ohio, U.S.A
| | - Christopher J McMellen
- Department of Orthopaedic Surgery, University Hospitals Cleveland Medical Center, Cleveland Ohio, U.S.A
| | - Jacob G Calcei
- Department of Orthopaedic Surgery, University Hospitals Cleveland Medical Center, Cleveland Ohio, U.S.A
| | - James E Voos
- Department of Orthopaedic Surgery, University Hospitals Cleveland Medical Center, Cleveland Ohio, U.S.A
| |
Collapse
|
8
|
Kimura M, Nakase J, Takata Y, Shimozaki K, Asai K, Yoshimizu R, Kanayama T, Yanatori Y, Tsuchiya H. Regeneration Using Adipose-Derived Stem Cell Sheets in a Rabbit Meniscal Defect Model Improves Tensile Strength and Load Distribution Function of the Meniscus at 12 Weeks. Arthroscopy 2023; 39:360-370. [PMID: 35995333 DOI: 10.1016/j.arthro.2022.07.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 02/02/2023]
Abstract
PURPOSE The purpose of this study was to evaluate the mechanical properties, such as the tensile strength and load distribution function, of the meniscus tissue regenerated using adipose-derived stem cell (ADSC) sheets in a rabbit meniscal defect model. METHODS ADSC sheets were prepared from adipose tissue of rabbits. The anterior half of the medial meniscus was removed from both knees. One knee was transplanted with an ADSC sheet; the contralateral knee was closed without transplantation. Mechanical tests were performed at 4 and 12 weeks posttransplantation. In the tensile test, tensile force was applied to the entire medial meniscus, including the normal area (n = 10/group). Compression tests were performed on the entire knee, with soft tissues other than the ligament removed. A pressure-sensitive film was inserted under the medial meniscus and a 40-N load was applied (n = 5/group). RESULTS In the tensile test, the elastic modulus in ADSC-treated knees was higher at 12 weeks (ADSC: 70.30 ± 18.50 MPa, control: 43.71 ± 7.11 MPa, P = .009). The ultimate tensile strength (UTS) in ADSC-treated knees at 12 weeks was also higher (ADSC: 22.69 ± 5.87 N, control: 15.45 ± 4.08 N, P = .038). In the compression test, the contact area was larger in the ADSC group at 4 weeks (ADSC: 31.60 ± 8.17 mm2, control: 20.33 ± 2.86 mm2, P = .024) and 12 weeks (ADSC: 41.07 ± 6.09 mm2, control: 30.53 ± 5.47 mm2, P = .04). Peak pressure was significantly lower in ADSC-treated knees at 12 weeks (ADSC: 11.91 ± 1.03 MPa, control: 15.53 ± 2.3 MPa, P = .002). CONCLUSIONS The regenerated meniscus tissue, 12 weeks after transplantation of the ADSC sheets into the meniscal defect area, had high elastic modulus and UTS. In the meniscus-tibia compartment, the contact area was large and the peak pressure was low. CLINICAL RELEVANCE ADSC sheets promoted regeneration of meniscus. ADSC sheet transplantation for meniscal defects could be an effective regenerative therapy.
Collapse
Affiliation(s)
- Mitsuhiro Kimura
- Department of Orthopedic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Junsuke Nakase
- Department of Orthopedic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.
| | - Yasushi Takata
- Department of Orthopedic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Kengo Shimozaki
- Department of Orthopedic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Kazuki Asai
- Department of Orthopedic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Rikuto Yoshimizu
- Department of Orthopedic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Tomoyuki Kanayama
- Department of Orthopedic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Yusuke Yanatori
- Department of Orthopedic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Hiroyuki Tsuchiya
- Department of Orthopedic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
9
|
Citro V, Clerici M, Boccaccini AR, Della Porta G, Maffulli N, Forsyth NR. Tendon tissue engineering: An overview of biologics to promote tendon healing and repair. J Tissue Eng 2023; 14:20417314231196275. [PMID: 37719308 PMCID: PMC10501083 DOI: 10.1177/20417314231196275] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/06/2023] [Indexed: 09/19/2023] Open
Abstract
Tendons are dense connective tissues with a hierarchical polarized structure that respond to and adapt to the transmission of muscle contraction forces to the skeleton, enabling motion and maintaining posture. Tendon injuries, also known as tendinopathies, are becoming more common as populations age and participation in sports/leisure activities increases. The tendon has a poor ability to self-heal and regenerate given its intrinsic, constrained vascular supply and exposure to frequent, severe loading. There is a lack of understanding of the underlying pathophysiology, and it is not surprising that disorder-targeted medicines have only been partially effective at best. Recent tissue engineering approaches have emerged as a potential tool to drive tendon regeneration and healing. In this review, we investigated the physiochemical factors involved in tendon ontogeny and discussed their potential application in vitro to reproduce functional and self-renewing tendon tissue. We sought to understand whether stem cells are capable of forming tendons, how they can be directed towards the tenogenic lineage, and how their growth is regulated and monitored during the entire differentiation path. Finally, we showed recent developments in tendon tissue engineering, specifically the use of mesenchymal stem cells (MSCs), which can differentiate into tendon cells, as well as the potential role of extracellular vesicles (EVs) in tendon regeneration and their potential for use in accelerating the healing response after injury.
Collapse
Affiliation(s)
- Vera Citro
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire, UK
- Department of Materials Science and Engineering, Institute of Biomaterials University of Erlangen-Nuremberg, Cauerstrasse 6, Erlangen, Germany
| | - Marta Clerici
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire, UK
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, Baronissi, Salerno, Italy
| | - Aldo R. Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials University of Erlangen-Nuremberg, Cauerstrasse 6, Erlangen, Germany
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, Baronissi, Salerno, Italy
- Interdepartmental Centre BIONAM, University of Salerno, via Giovanni Paolo I, Fisciano, Salerno, Italy
| | - Nicola Maffulli
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire, UK
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, Baronissi, Salerno, Italy
- Department of Trauma and Orthopaedic Surgery, University Hospital ‘San Giovanni di Dio e Ruggi D’Aragona’, Salerno, Italy
| | - Nicholas R. Forsyth
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire, UK
- Vice Principals’ Office, University of Aberdeen, Kings College, Aberdeen, UK
| |
Collapse
|
10
|
Return to sport soccer after anterior cruciate ligament reconstruction: ISAKOS consensus. J ISAKOS 2022; 7:150-161. [PMID: 35998884 DOI: 10.1016/j.jisako.2022.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/07/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Many factors can affect the return to pivoting sports, after an Anterior Cruciate Ligament Reconstruction. Prehabilitation, rehabilitation, surgical and psychological aspects play an essential role in the decision to return to sports. The purpose of this study is to reach an international consensus about the best conditions for returning to sports in soccer-one of the most demanding level I pivoting sports after anterior cruciate ligament (ACL) reconstruction. METHODS 34 International experts in the management of ACL injuries, representing all the Continents were convened and participated in a process based on the Delphi method to achieve a consensus. 37 statements related to ACL reconstruction were reviewed by the experts in three rounds of surveys in complete anonymity. The statements were prepared by the working group based on previous literature or systematic reviews. Rating agreement through a Likert Scale: strongly agree, agree, neither agree or disagree, disagree and strongly disagree was used. To define consensus, it was established that the assertions should achieve a 75% of agreement or disagreement. RESULTS Of the 37 statements, 10 achieved unanimous consensus, 18 non-unanimous consensus and 9 did not achieve consensus. In the preoperative, the correction of the range of motion deficit, the previous high level of participation in sports and a better knowledge of the injury by the patient and compliance to participate in Rehabilitation were the statements that reached unanimous consensus. During the surgery, the treatment of associated injuries, as well as the use of autografts, and the addition of a lateral extra-articular tenodesis in some particular cases (active young athletes, <25 years old, hyperlaxity, high rotatory laxity and revision cases) obtained also 100% consensus. In the postoperative period, psychological readiness and its validation with scales, adequate physical preparation, as well as not basing the RTSS purely on the time of evolution after surgery, were the factors that reached unanimous Consensus. CONCLUSIONS The consensus statements derived from this international ISAKOS leaders, may assist clinicians in deciding when to return to sports soccer in patients after an ACL reconstruction. Those statements that reached 100% consensus have to be strongly considered in the final decision to RTS soccer.
Collapse
|
11
|
Amini M, Venkatesan JK, Liu W, Leroux A, Nguyen TN, Madry H, Migonney V, Cucchiarini M. Advanced Gene Therapy Strategies for the Repair of ACL Injuries. Int J Mol Sci 2022; 23:ijms232214467. [PMID: 36430947 PMCID: PMC9695211 DOI: 10.3390/ijms232214467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/07/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
The anterior cruciate ligament (ACL), the principal ligament for stabilization of the knee, is highly predisposed to injury in the human population. As a result of its poor intrinsic healing capacities, surgical intervention is generally necessary to repair ACL lesions, yet the outcomes are never fully satisfactory in terms of long-lasting, complete, and safe repair. Gene therapy, based on the transfer of therapeutic genetic sequences via a gene vector, is a potent tool to durably and adeptly enhance the processes of ACL repair and has been reported for its workability in various experimental models relevant to ACL injuries in vitro, in situ, and in vivo. As critical hurdles to the effective and safe translation of gene therapy for clinical applications still remain, including physiological barriers and host immune responses, biomaterial-guided gene therapy inspired by drug delivery systems has been further developed to protect and improve the classical procedures of gene transfer in the future treatment of ACL injuries in patients, as critically presented here.
Collapse
Affiliation(s)
- Mahnaz Amini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
| | - Jagadeesh K. Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
| | - Wei Liu
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
| | - Amélie Leroux
- Laboratoire CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, Avenue JB Clément, 93430 Villetaneuse, France
| | - Tuan Ngoc Nguyen
- Laboratoire CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, Avenue JB Clément, 93430 Villetaneuse, France
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
| | - Véronique Migonney
- Laboratoire CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, Avenue JB Clément, 93430 Villetaneuse, France
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
- Correspondence: or
| |
Collapse
|
12
|
Practical Considerations for Translating Mesenchymal Stromal Cell-Derived Extracellular Vesicles from Bench to Bed. Pharmaceutics 2022; 14:pharmaceutics14081684. [PMID: 36015310 PMCID: PMC9414392 DOI: 10.3390/pharmaceutics14081684] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSCs) have shown potential for the treatment of tendon and ligament injuries. This approach can eliminate the need to transplant live cells to the human body, thereby reducing issues related to the maintenance of cell viability and stability and potential erroneous differentiation of transplanted cells to bone or tumor. Despite these advantages, there are practical issues that need to be considered for successful clinical application of MSC-EV-based products in the treatment of tendon and ligament injuries. This review aims to discuss the general and tissue-specific considerations for manufacturing MSC-EVs for clinical translation. Specifically, we will discuss Good Manufacturing Practice (GMP)-compliant manufacturing and quality control (parent cell source, culture conditions, concentration method, quantity, identity, purity and impurities, sterility, potency, reproducibility, storage and formulation), as well as safety and efficacy issues. Special considerations for applying MSC-EVs, such as their compatibility with arthroscopy for the treatment of tendon and ligament injuries, are also highlighted.
Collapse
|
13
|
Kerzner B, Fortier LM, Swindell HW, McCormick JR, Kasson LB, Hevesi M, LaPrade RF, Mandelbaum BR, Chahla J. An Update on the Use of Orthobiologics Combined with Corrective Osteotomies for Osteoarthritis: Osteotomy Site and Intra-Articular Efficacy. OPER TECHN SPORT MED 2022. [DOI: 10.1016/j.otsm.2022.150933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
González-González A, García-Sánchez D, Alfonso-Fernández A, Haider KH, Rodríguez-Rey JC, Pérez-Campo FM. Regenerative Medicine Applied to the Treatment of Musculoskeletal Pathologies. HANDBOOK OF STEM CELL THERAPY 2022:1123-1158. [DOI: 10.1007/978-981-19-2655-6_50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
15
|
Matsumoto T, Sato Y, Kobayashi T, Suzuki K, Kimura A, Soma T, Ito E, Kikuchi T, Kobayashi S, Harato K, Niki Y, Matsumoto M, Nakamura M, Miyamoto T. Adipose-Derived Stem Cell Sheets Improve Early Biomechanical Graft Strength in Rabbits After Anterior Cruciate Ligament Reconstruction. Am J Sports Med 2021; 49:3508-3518. [PMID: 34643475 DOI: 10.1177/03635465211041582] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Although various reconstruction techniques are available for anterior cruciate ligament (ACL) injuries, a long recovery time is required before patients return to sports activities, as the reconstructed ACL requires time to regain strength. To date, several studies have reported use of mesenchymal stem cells in orthopaedic surgery; however, no studies have used adipose-derived stem cell (ADSC) sheets in ACL reconstruction (ACLR). HYPOTHESIS ADSC sheet transplantation can improve biomechanical strength of the autograft used in ACLR. STUDY DESIGN Controlled laboratory study. METHODS A total of 68 healthy Japanese white rabbits underwent unilateral ACLR with a semitendinosus tendon autograft after random enrollment into a control group (no sheet; n = 34) and a sheet group (ADSC sheet; n = 34). At 2, 4, 8, 16, and 24 weeks after surgery, rabbits in each group were sacrificed to evaluate tendon-bone healing using histological staining, micro-computed tomography, and biomechanical testing. At 24 weeks, scanning transmission electron microscopy of the graft midsubstance was performed. RESULTS The ultimate failure load for the control and sheet groups, respectively, was as follows: 17.2 ± 5.5 versus 37.3 ± 10.3 (P = .01) at 2 weeks, 28.6 ± 1.9 versus 47.4 ± 10.4 (P = .003) at 4 weeks, 53.0 ± 14.3 versus 48.1 ± 9.3 (P = .59) at 8 weeks, 66.2 ± 9.3 versus 95.2 ± 43.1 (P = .24) at 16 weeks, and 66.7 ± 27.3 versus 85.3 ± 29.5 (P = .39) at 24 weeks. The histological score was also significantly higher in the sheet group compared with the control group at early stages up to 8 weeks. On micro-computed tomography, relative to the control group, the bone tunnel area was significantly narrower in the sheet group at 4 weeks, and the bone volume/tissue volume of the tendon-bone interface was significantly greater at 24 weeks. Scanning transmission electron microscopy at 24 weeks indicated that the mean collagen fiber diameter in the midsubstance was significantly greater, as was the occupation ratio of collagen fibers per field of view, in the sheet group. CONCLUSION ADSC sheets improved biomechanical strength, prevented bone tunnel enlargement, and promoted tendon-bone interface healing and graft midsubstance healing in an in vivo rabbit model. CLINICAL RELEVANCE ADSC sheets may be useful for early tendon-bone healing and graft maturation in ACLR.
Collapse
Affiliation(s)
- Tatsuaki Matsumoto
- Department of Orthopedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Yuiko Sato
- Department of Orthopedic Surgery, School of Medicine, Keio University, Tokyo, Japan; Department of Advanced Therapy for Musculoskeletal Disorders II, School of Medicine, Keio University, Tokyo, Japan; Department of Musculoskeletal Reconstruction and Regeneration Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Tami Kobayashi
- Department of Orthopedic Surgery, School of Medicine, Keio University, Tokyo, Japan; Department of Advanced Therapy for Musculoskeletal Disorders II, School of Medicine, Keio University, Tokyo, Japan; Department of Musculoskeletal Reconstruction and Regeneration Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Kunika Suzuki
- Department of Orthopedic Surgery, School of Medicine, Keio University, Tokyo, Japan; Regenerative Medicine iPS Gateway Center, Tokyo, Japan
| | - Atsushi Kimura
- Department of Orthopedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Tomoya Soma
- Division of Oral and Maxillofacial Surgery, Department of Dentistry and Oral Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Eri Ito
- Institute for Integrated Sports Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Toshiyuki Kikuchi
- Department of Clinical Research, National Hospital Organization Murayama Medical Center, Tokyo, Japan
| | - Shu Kobayashi
- Department of Orthopedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Kengo Harato
- Department of Orthopedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Yasuo Niki
- Department of Orthopedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Morio Matsumoto
- Department of Orthopedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Takeshi Miyamoto
- Department of Orthopedic Surgery, School of Medicine, Keio University, Tokyo, Japan; Department of Advanced Therapy for Musculoskeletal Disorders II, School of Medicine, Keio University, Tokyo, Japan; Department of Musculoskeletal Reconstruction and Regeneration Surgery, School of Medicine, Keio University, Tokyo, Japan; Department of Orthopedic Surgery, Kumamoto University, Kumamoto, Japan
- Investigation performed at Keio University, Tokyo, Japan
| |
Collapse
|
16
|
Bone Mesenchymal Stem Cells Contribute to Ligament Regeneration and Graft-Bone Healing after Anterior Cruciate Ligament Reconstruction with Silk-Collagen Scaffold. Stem Cells Int 2021; 2021:6697969. [PMID: 33981343 PMCID: PMC8088362 DOI: 10.1155/2021/6697969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/25/2021] [Accepted: 04/15/2021] [Indexed: 11/29/2022] Open
Abstract
Anterior cruciate ligament (ACL) reconstruction was realized using a combination of bone mesenchymal stem cells (BMSCs) and silk–collagen scaffold, and an in vivo evaluation of this combination was performed. By combining type I collagen and degummed silk fibroin mesh, silk–collagen scaffolds were prepared to simulate ligament components. BMSCs isolated from bone marrow of rabbits were cultured for a homogenous population and seeded on the silk–collagen scaffold. In the scaffold and BMSC (S/C) group, scaffolds were seeded with BMSCs for 72 h and then rolled and used to replace the ACL in 20 rabbits. In the scaffold (S) group, scaffolds immersed only in culture medium for 72 h were used for ACL reconstruction. Specimens were collected at 4 and 16 weeks postoperatively to assess ligament regeneration and bone integration. HE and immunohistochemical staining (IHC) were performed to assess ligament regeneration in the knee cavity. To assess bone integration at the graft–bone interface, HE, Russell–Movat staining, micro-CT, and biomechanical tests were performed. After 4 weeks, vigorous cell proliferation was observed in the core part of the scaffold in the S/C group, and a quantity of fibroblast-like cells and extracellular matrix (ECM) was observed in the center part of the graft at 16 weeks after surgery. At 4 and 16 weeks postoperatively, the tenascin-C expression in the S/C group was considerably higher than that in the S group (4 w, p < 0.01; 16 w, p < 0.01). Furthermore, bone integration was better in the S/C group than in the S group, with histological observation of trabecular bone growth into the graft and more mineralized tissue formation detected by micro-CT (4 w, bone volume fraction (BV/TV), p = 0.0169, bone mineral density (BMD), p = 0.0001; 16 w, BV/TV, p = 0.1233, BMD, p = 0.0494). These results indicate that BMSCs promote ligament regeneration in the knee cavity and bone integration at the graft–bone interface. Silk–collagen scaffolds and BMSCs will likely be combined for clinical practice in the future.
Collapse
|
17
|
Mesenchymal Stem Cell-Derived Extracellular Vesicles for the Promotion of Tendon Repair - an Update of Literature. Stem Cell Rev Rep 2020; 17:379-389. [PMID: 32785869 DOI: 10.1007/s12015-020-10023-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tendon injuries are prevalent in physical activities and sports. Tendon heals slowly after injuries. The results of conservative treatments and surgery are not satisfactory with high re-injury rate and scar tissue formation. The application of mesenchymal stem cells (MSCs) to the injured tendons was reported to promote tendon repair. Recent studies have suggested that MSCs supported tendon repair via the secretion of paracrine factors. Extracellular vesicles (EVs) are a heterogeneous group of cell-derived membranous structures that are produced and secreted by most eukaryotic cells. They carry a plethora of proteins, lipids, microRNA and mRNA which reprogram the recipient cells and are involved in multiple physiological and pathological processes. EVs were shown to promote tissue repair and mediate the healing effects of MSCs. In this review, I aim to review the recent literature on the promotion of tendon repair using EVs-derived from MSCs (MSC-EVs). The mechanisms underlying these actions are also reviewed and future research directions are discussed. Better understanding of the roles of MSC-EVs in tendon repair would offer a new treatment strategy to circumvent this devastating soft tissue disorder. Graphical Abstract.
Collapse
|
18
|
Apostolakos JM, Lin KM, Carr JB, Bedi A, Camp CL, Dines JS. The Role of Biologic Agents in the Non-operative Management of Elbow Ulnar Collateral Ligament Injuries. Curr Rev Musculoskelet Med 2020; 13:442-448. [PMID: 32388723 DOI: 10.1007/s12178-020-09637-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE OF REVIEW Injuries to the elbow ulnar collateral ligament (UCL) are especially common in the overhead throwing athlete. Despite preventative measures, these injuries are occurring at increasing rates in athletes of all levels. UCL reconstruction techniques generally require a prolonged recovery period and introduce the potential for intraoperative complications prompting investigations into more conservative treatment measures based on specific patient and injury characteristics. The purpose of this review is to describe the current literature regarding the use of biologic augmentation in the management of UCL injuries. Specifically, this review will focus on the basic science background and clinical investigations pertaining to biologic augmentation utilizing platelet-rich plasma (PRP) and autologous stem cells. RECENT FINDINGS Despite some evidence supporting the use of PRP therapy in patients with partial UCL tears, there is no current consensus regarding its true efficacy. Similarly, due to a lack of clinical investigations, no consensus exists regarding the utilization of autologous stem cell treatments in the management of UCL injuries. Management of UCL injuries ranges from non-operative treatment with focused physical therapy protocols to operative reconstruction. The use of biologic augmentation in these injuries continues to be investigated in the orthopedic community. Currently, no consensus exists regarding the efficacy of either PRP or autologous stem cells and further research is needed to further define the appropriate role of these treatments in the management of UCL injuries.
Collapse
Affiliation(s)
- John M Apostolakos
- Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, NY, USA.
| | - Kenneth M Lin
- Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, NY, USA
| | - James B Carr
- Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, NY, USA
| | | | | | - Joshua S Dines
- Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, NY, USA
| |
Collapse
|