1
|
Heme Oxygenase-1 Overexpression Promotes Uveal Melanoma Progression and Is Associated with Poor Clinical Outcomes. Antioxidants (Basel) 2022; 11:antiox11101997. [PMID: 36290720 PMCID: PMC9598584 DOI: 10.3390/antiox11101997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 12/05/2022] Open
Abstract
Uveal melanoma (UM) is the most common primary intraocular tumor in adults. To date, the main strategies to counteract its progression consist of focal radiation on the tumor site and ocular enucleation. Furthermore, many UM patients develop liver metastasis within 10 years following diagnosis, eventually resulting in a poorer prognosis for those patients. Dissecting the molecular mechanism involved in UM progression may lead to identify novel prognostic markers with significative clinical applications. The aim of the present study was to evaluate the role of Heme Oxygenase 1 (HO-1) in regulating UM progression. UM cell lines (92.1) were treated with Hemin (CONC e time), a strong inducer of HO-1, and VP13/47, a selective inhibitor of its enzymatic activity. Interestingly, our results showed an enhanced 92.1 cellular proliferation and wound healing ability following an HO-1 increase, overall unveiling the role played by this protein in tumor progression. Similar results were obtained following treatment with two different CO releasing molecules (CORM-3 and CORM-A1). These results were further confirmed in a clinical setting using our UM cohort. Our results demonstrated an increased median HO-1 expression in metastasizing UM when compared to nonmetastasizing patients. Overall, our results showed that HO-1 derived CO plays a major role in UM progression and HO-1 protein expression may serve as a potential prognostic and therapeutical factor in UM patients.
Collapse
|
2
|
Vanella L, Barbagallo I, Tibullo D, Forte S, Zappalà A, Li Volti G. The non-canonical functions of the heme oxygenases. Oncotarget 2018; 7:69075-69086. [PMID: 27626166 PMCID: PMC5356613 DOI: 10.18632/oncotarget.11923] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/05/2016] [Indexed: 11/25/2022] Open
Abstract
Heme oxygenase (HO) isoforms catalyze the conversion of heme to carbon monoxide (CO) and biliverdin with a concurrent release of iron, which can drive the synthesis of ferritin for iron sequestration. Most of the studies so far were directed at evaluating the protective effect of these enzymes because of their ability to generate antioxidant and antiapoptotic molecules such as CO and bilirubin. Recent evidences are suggesting that HO may possess other important physiological functions, which are not related to its enzymatic activity and for which we would like to introduce for the first time the term “non canonical functions”. Recent evidence suggest that both HO isoforms may form protein-protein interactions (i.e. cytochrome P450, adiponectin, CD91) thus serving as chaperone-like protein. In addition, truncated HO-1 isoform was localized in the nuclear compartment under certain experimental conditions (i.e. excitotoxicity, hypoxia) regulating the activity of important nuclear transcription factors (i.e. Nrf2) and DNA repair. In the present review, we discuss three potential signaling mechanisms that we refer to as the non-canonical functions of the HO isoforms: protein-protein interaction, intracellular compartmentalization, and extracellular secretion. The aim of the present review is to describe each of this mechanism and all the aspects warranting additional studies in order to unravel all the functions of the HO system.
Collapse
Affiliation(s)
- Luca Vanella
- Department of Drug Sciences, University of Catania, Catania, Italy
| | | | - Daniele Tibullo
- Division of Haematology, AOU "Policlinico - Vittorio Emanuele", University of Catania, Catania, Italy
| | - Stefano Forte
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,Istituto Oncologico del Mediterraneo Ricerca srl Viagrande, Catania, Italy
| | - Agata Zappalà
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,EuroMediterranean Institute of Science and Technology, Palermo, Italy
| |
Collapse
|
3
|
Tibullo D, Barbagallo I, Giallongo C, Vanella L, Conticello C, Romano A, Saccone S, Godos J, Di Raimondo F, Li Volti G. Heme oxygenase-1 nuclear translocation regulates bortezomibinduced cytotoxicity and mediates genomic instability in myeloma cells. Oncotarget 2018; 7:28868-80. [PMID: 26930712 PMCID: PMC5045362 DOI: 10.18632/oncotarget.7563] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/20/2016] [Indexed: 12/20/2022] Open
Abstract
Multiple myeloma (MM) is a clonal B-cell malignancy characterized by an accumulation of clonal plasma cells in the bone marrow leading to bone destruction and bone marrow failure. Several molecular mechanisms underlie chemoresistance among which heme oxygenase-1 (HO-1) could play a major role. The aim of the present research was to evaluate the impact of HO-1 in MM following bortezomib (BTZ) treatment and how HO-1 is implicated in the mechanisms of chemoresistance. MM cells were treated for 24h with BTZ (15 nM), a boronic acid dipeptide inhibitor of the 26S proteasome used in the treatment of patients with MM as first-line therapy. We evaluated cell viability, reactive oxygen species (ROS) formation, endoplasmic reticulum (ER) stress, HO-1 expression and compartmentalization and cellular genetic instability. Results showed that BTZ significantly reduced cell viability in different MM cell lines and induced ER-stress and ROS formation. Concomitantly, we observed a significant overexpression of both HO-1 gene and protein levels. This effect was abolished by concomitant treatment with 4-phenybutirric acid, a molecular chaperone, which is known to reduce ER-stress. Surprisingly, inhibition of HO activity with SnMP (10μM) failed to increase BTZ sensitivity in MM cells whereas inhibition of HO-1 nuclear translocation by E64d, a cysteine protease inhibitor, increased sensitivity to BTZ and decreased genetic instability as measured by cytokinesis-block micronucleus assay. In conclusion, our data suggest that BTZ sensitivity depends on HO-1 nuclear compartmentalization and not on its enzymatic activity and this finding may represent an important tool to overcome BTZ chemoresistance in MM patients.
Collapse
Affiliation(s)
- Daniele Tibullo
- Division of Haematology, AOU "Policlinico - Vittorio Emanuele", University of Catania, Catania, Italy.,Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | | | - Cesarina Giallongo
- Division of Haematology, AOU "Policlinico - Vittorio Emanuele", University of Catania, Catania, Italy
| | - Luca Vanella
- Department of Drug Sciences, University of Catania, Catania, Italy
| | - Concetta Conticello
- Division of Haematology, AOU "Policlinico - Vittorio Emanuele", University of Catania, Catania, Italy
| | - Alessandra Romano
- Division of Haematology, AOU "Policlinico - Vittorio Emanuele", University of Catania, Catania, Italy
| | - Salvatore Saccone
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Justyna Godos
- Department of Drug Sciences, University of Catania, Catania, Italy
| | - Francesco Di Raimondo
- Division of Haematology, AOU "Policlinico - Vittorio Emanuele", University of Catania, Catania, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,EuroMediterranean Institute of Science and Technology, Palermo, Italy
| |
Collapse
|
4
|
Li Volti G, Tibullo D, Vanella L, Giallongo C, Di Raimondo F, Forte S, Di Rosa M, Signorelli SS, Barbagallo I. The Heme Oxygenase System in Hematological Malignancies. Antioxid Redox Signal 2017; 27:363-377. [PMID: 28257621 DOI: 10.1089/ars.2016.6735] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Several lines of evidence suggest that hematological malignancies exhibit an altered redox balance homeostasis that can lead to the activation of various survival pathways that, in turn, lead to the progression of disease and chemoresistance. Among these pathways, the heme oxygenase-1 (HO-1) pathway is likely to play a major role. HO catalyzes the enzymatic degradation of heme with the simultaneous release of carbon monoxide (CO), ferrous iron (Fe2+), and biliverdin. This review focuses on the role of HO-1 in various hematological malignancies and the possibility of exploiting such targets to improve the outcome of well-established chemotherapeutic regimens. Recent Advances and Critical Issues: Interestingly, the inhibition of the expression of HO-1 (e.g., with siRNA) or HO activity (with competitive inhibitors) contributes to the increased efficacy of chemotherapy and improves the outcome in animal models. Furthermore, some hematological malignancies (e.g., chronic myeloid leukemia and multiple myeloma) have served to explore the non-canonical functions of HO-1, such as the association between nuclear compartmentalization and genetic instability and/or chemoresistance. FUTURE DIRECTIONS The HO system may serve as an important tool in the field of hematological malignancies because it can be exploited to counteract chemoresistance and to monitor the outcome of bone marrow transplants and may be an additional target for combined therapies. Antioxid. Redox Signal. 27, 363-377.
Collapse
Affiliation(s)
- Giovanni Li Volti
- 1 Department of Biomedical and Biotechnological Sciences, University of Catania , Catania, Italy .,2 EuroMediterranean Institute of Science and Technology , Palermo, Italy
| | - Daniele Tibullo
- 3 Division of Haematology, AOU "Policlinico - Vittorio Emanuele", University of Catania , Catania, Italy
| | - Luca Vanella
- 4 Department of Drug Sciences, University of Catania , Catania, Italy
| | - Cesarina Giallongo
- 3 Division of Haematology, AOU "Policlinico - Vittorio Emanuele", University of Catania , Catania, Italy
| | - Francesco Di Raimondo
- 3 Division of Haematology, AOU "Policlinico - Vittorio Emanuele", University of Catania , Catania, Italy
| | - Stefano Forte
- 1 Department of Biomedical and Biotechnological Sciences, University of Catania , Catania, Italy .,5 Istituto Oncologico del Mediterraneo Ricerca srl Viagrande , Catania, Italy
| | - Michelino Di Rosa
- 1 Department of Biomedical and Biotechnological Sciences, University of Catania , Catania, Italy
| | | | | |
Collapse
|
5
|
Tibullo D, Giallongo C, Puglisi F, Tomassoni D, Camiolo G, Cristaldi M, Brundo MV, Anfuso CD, Lupo G, Stampone T, Li Volti G, Amenta F, Avola R, Bramanti V. Effect of Lipoic Acid on the Biochemical Mechanisms of Resistance to Bortezomib in SH-SY5Y Neuroblastoma Cells. Mol Neurobiol 2017; 55:3344-3350. [PMID: 28497200 DOI: 10.1007/s12035-017-0575-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/25/2017] [Indexed: 01/06/2023]
Abstract
Neuroblastoma (NB) is an extracranial solid cancer and the most common cancer in infancy. Despite the standard treatment for NB is based on the combination of chemotherapeutic drugs such as doxorubicin, vincristine, cyclophosphamide, and cisplatin, chemoresistance occurs over the time. The aim of the present research was to evaluate the effect of bortezomib (BTZ) (50 nM) on NB cell viability and how lipoic acid (ALA) (100 μM) modifies pharmacological response to this chemotherapeutic agent. Cell viability was assessed by ATP luminescence assay whereas expression of oxidative stress marker (i.e., heme oxygenase-1) and endoplasmic reticulum stress proteins was performed by real-time PCR, western blot, and immunofluorescence. Our data showed that BTZ treatment significantly reduced cell viability when compared to untreated cultures (about 40%). Interestingly, ALA significantly reduced the efficacy of BTZ (about 30%). Furthermore, BTZ significantly induced heme oxygenase-1 as a result of increased oxidative stress and such overexpression was prevented by concomitant treatment with ALA. Similarly, ALA significantly reduced BTZ-mediated endoplasmic reticulum stress as measured by reduction in BiP1 and IRE1α, ERO1α, and PDI expression. In conclusion, our data suggest that BTZ efficacy is dependent on cellular redox status and such mechanisms may be responsible of chemoresistance to this chemotherapeutic agent.
Collapse
Affiliation(s)
- Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 87, 95100, Catania, Italy.,Division of Haematology, A.O.U. "Policlinico-Vittorio Emanuele", University of Catania, Via Citelli 6, 95100, Catania, Italy
| | - Cesarina Giallongo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 87, 95100, Catania, Italy.,Division of Haematology, A.O.U. "Policlinico-Vittorio Emanuele", University of Catania, Via Citelli 6, 95100, Catania, Italy
| | - Fabrizio Puglisi
- Division of Haematology, A.O.U. "Policlinico-Vittorio Emanuele", University of Catania, Via Citelli 6, 95100, Catania, Italy
| | - Daniele Tomassoni
- School of Bioscience and Veterinary Medicine, University of Camerino, via Gentile III da Varano, Camerino, 62032, Italy
| | - Giuseppina Camiolo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 87, 95100, Catania, Italy
| | - Martina Cristaldi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 87, 95100, Catania, Italy
| | - Maria Violetta Brundo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 87, 95100, Catania, Italy
| | - Carmelina Daniela Anfuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 87, 95100, Catania, Italy
| | - Gabriella Lupo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 87, 95100, Catania, Italy
| | - Tomaso Stampone
- Division of Microbiology and Virology, Villa Sofia Hospital, A.O.O.R. "Villa Sofia-Cervello", Piazza Salerno 1, 90146, Palermo, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 87, 95100, Catania, Italy
| | - Francesco Amenta
- School of Medicinal Sciences and Health Products, University of Camerino, via Madonna delle Carceri 9, Camerino, 62032, Italy
| | - Roberto Avola
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 87, 95100, Catania, Italy.
| | - Vincenzo Bramanti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 87, 95100, Catania, Italy.,Division of Microbiology and Virology, Villa Sofia Hospital, A.O.O.R. "Villa Sofia-Cervello", Piazza Salerno 1, 90146, Palermo, Italy
| |
Collapse
|