1
|
Mattioda C, Voena C, Ciardelli G, Mattu C. In Vitro 3D Models of Haematological Malignancies: Current Trends and the Road Ahead? Cells 2025; 14:38. [PMID: 39791739 PMCID: PMC11720277 DOI: 10.3390/cells14010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025] Open
Abstract
Haematological malignancies comprise a diverse group of life-threatening systemic diseases, including leukaemia, lymphoma, and multiple myeloma. Currently available therapies, including chemotherapy, immunotherapy, and CAR-T cells, are often associated with important side effects and with the development of drug resistance and, consequently, disease relapse. In the last decades, it was largely demonstrated that the tumor microenvironment significantly affects cancer cell proliferation and tumor response to treatment. The development of biomimetic, in vitro models may promote the investigation of the interactions between cancer cells and the tumor microenvironment and may help to better understand the mechanisms leading to drug resistance. Although advanced in vitro models have been largely explored in the field of solid tumors, due to the complex nature of the blood cancer tumor microenvironment, the mimicking of haematological malignancies mostly relies on simpler systems, often limited to two-dimensional cell culture, which intrinsically excludes the microenvironmental niche, or to ethically debated animal models. This review aims at reporting an updated overview of state-of-the-art hematological malignancies 3D in vitro models, emphasizing the key features and limitations of existing systems to inspire further research in this underexplored field.
Collapse
Affiliation(s)
- Carlotta Mattioda
- DIMEAS, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy; (C.M.); (G.C.)
| | - Claudia Voena
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy;
| | - Gianluca Ciardelli
- DIMEAS, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy; (C.M.); (G.C.)
| | - Clara Mattu
- DIMEAS, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy; (C.M.); (G.C.)
| |
Collapse
|
2
|
Harmon KA, Roman S, Lancaster HD, Chowhury S, Cull E, Goodwin RL, Arce S, Fanning S. Structural and Ultrastructural Analysis of the Multiple Myeloma Cell Niche and a Patient-Specific Model of Plasma Cell Dysfunction. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:254-264. [PMID: 34881690 DOI: 10.1017/s1431927621013805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Multiple myeloma (MM) is a deadly, incurable malignancy in which antibody-secreting plasma cells (PCs) become neoplastic. Previous studies have shown that the PC niche plays a role cancer progression. Bone marrow (BM) cores from MM and a premalignant condition known as monoclonal gammopathy of unknown significance (MGUS) patients were analyzed with confocal and transmission electron microscopy. The BM aspirates from these patients were used to generate 3D PC cultures. These in vitro cultures were then assayed for the molecular, cellular, and ultrastructural hallmarks of dysfunctional PC at days 1 and 5. In vivo, evidence of PC endoplasmic reticulum stress was found in both MM and MGUS BM; however, evidence of PC autophagy was found only in MM BM. Analysis of in vitro cultures found that MM PC can survive and maintain a differentiated phenotype over an unprecedented 5 days, had higher levels of paraprotein production when compared to MGUS-derived cultures, and showed evidence of PC autophagy as well. Increased fibronectin deposition around PC associated with disease severity and autophagy dysregulation was also observed. 3D cultures constructed from BM aspirates from MGUS and MM patients allow for long-term culture of functional PC while maintaining their distinct morphological phenotypes.
Collapse
Affiliation(s)
| | | | - Harrison D Lancaster
- School of Medicine Greenville, University of South Carolina, Greenville, SC 29605, USA
| | - Saeeda Chowhury
- School of Medicine Greenville, University of South Carolina, Greenville, SC 29605, USA
- Department of Internal Medicine, Prisma Health System Upstate, Greenville, SC29605, USA
- Prisma Health Cancer Institute, Greenville, SC29605, USA
| | - Elizabeth Cull
- School of Medicine Greenville, University of South Carolina, Greenville, SC 29605, USA
- Department of Internal Medicine, Prisma Health System Upstate, Greenville, SC29605, USA
- Prisma Health Cancer Institute, Greenville, SC29605, USA
| | - Richard L Goodwin
- School of Medicine Greenville, University of South Carolina, Greenville, SC 29605, USA
| | - Sergio Arce
- School of Medicine Greenville, University of South Carolina, Greenville, SC 29605, USA
- Prisma Health Cancer Institute, Greenville, SC29605, USA
| | - Suzanne Fanning
- School of Medicine Greenville, University of South Carolina, Greenville, SC 29605, USA
- Department of Internal Medicine, Prisma Health System Upstate, Greenville, SC29605, USA
- Prisma Health Cancer Institute, Greenville, SC29605, USA
| |
Collapse
|
3
|
Chaudhary R, Morris RJ, Steinson E. The multifactorial roles of microglia and macrophages in the maintenance and progression of glioblastoma. J Neuroimmunol 2021; 357:577633. [PMID: 34153803 DOI: 10.1016/j.jneuroim.2021.577633] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/26/2021] [Accepted: 06/11/2021] [Indexed: 01/18/2023]
Abstract
The functional characteristics of glial cells, in particular microglia, have attained considerable importance in several diseases, including glioblastoma, the most hostile and malignant type of intracranial tumor. Microglia performs a highly significant role in the brain's inflammatory response mechanism. They exhibit anti-tumor properties via phagocytosis and the activation of a number of different cytotoxic substances. Some tumor-derived factors, however, transform these microglial cells into immunosuppressive and tumor-supportive, facilitating survival and progression of tumorigenic cells. Glioma-associated microglia and/or macrophages (GAMs) accounts for a large proportion of glioma infiltrating cells. Once within the tumor, GAMs exhibit a distinct phenotype of initiation that subsequently supports the growth and development of tumorigenic cells, angiogenesis and stimulates the infiltration of healthy brain regions. Interventions that suppress or prohibit the induction of GAMs at the tumor site or attenuate their immunological activities accommodating anti-tumor actions are likely to exert positive impact on glioblastoma treatment. In the present paper, we aim to summarize the most recent knowledge of microglia and its physiology, as well as include a very brief description of different molecular factors involved in microglia and glioblastoma interplay. We further address some of the major signaling pathways that regulate the baseline motility of glioblastoma progression. Finally, we discussed a number of therapeutic approaches regarding glioblastoma treatment.
Collapse
Affiliation(s)
- Rishabh Chaudhary
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, India.
| | - Rhianna J Morris
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Emma Steinson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
4
|
Yu S, Yu X, Sun L, Zheng Y, Chen L, Xu H, Jin J, Lan Q, Chen CC, Li M. GBP2 enhances glioblastoma invasion through Stat3/fibronectin pathway. Oncogene 2020; 39:5042-5055. [PMID: 32518375 DOI: 10.1038/s41388-020-1348-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 05/23/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022]
Abstract
Guanylate-binding protein 2 (GBP2) is an interferon-inducible large GTPase which is crucial to the protective immunity against microorganisms. However, its biological function in cancer remains largely unknown. Glioblastoma multiforme (GBM) is the most common and deadly brain tumor in adults. Here we show that GBP2 expression is highly elevated in GBM tumor and cell lines, particularly in those of the mesenchymal subtype. High GBP2 expression is associated with poor prognosis. GBP2 overexpression significantly promotes GBM cell migration and invasion in vitro, and GBP2 silencing by RNA interference exhibits opposite effects. We further show that fibronectin (FN1) is dramatically induced by GBP2 expression at both mRNA and protein levels, and FN1 is essential for GBP2-promoted GBM invasiveness. Inhibition of Stat3 pathway prevents GBP2-promoted FN1 induction and cell invasion. Consistently, GBP2 dramatically promotes GBM tumor growth and invasion in mice and significantly reduces the survival time of the mice with tumor. Taken together, these findings establish the role of GBP2/Stat3/FN1 signaling cascade in GBM invasion and suggest GBP2 may serve as a potential therapeutic target for inhibiting GBM invasion.
Collapse
Affiliation(s)
- Shuye Yu
- Central Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.,Songlingzhen Health Center, Wujiang District, Suzhou, Jiangsu Province, China
| | - Xiaoting Yu
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Lili Sun
- Central Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Yanwen Zheng
- Central Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Lili Chen
- Central Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Hui Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Jing Jin
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Qing Lan
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Clark C Chen
- Department of Neurosurgery, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Ming Li
- Central Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China. .,Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China. .,Department of Neurosurgery, University of Minnesota Medical School, Minneapolis, MN, USA.
| |
Collapse
|
5
|
Wang XD, Zhu MW, Shan D, Wang SY, Yin X, Yang YQ, Wang TH, Zhang CT, Wang Y, Liang WW, Zhang J, Jiang HZ, Dong GT, Jiang HQ, Qi Y, Feng HL. Spy1, a unique cell cycle regulator, alters viability in ALS motor neurons and cell lines in response to mutant SOD1-induced DNA damage. DNA Repair (Amst) 2019; 74:51-62. [DOI: 10.1016/j.dnarep.2018.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/09/2018] [Accepted: 12/20/2018] [Indexed: 02/06/2023]
|
6
|
Jin Q, Liu G, Bao L, Ma Y, Qi H, Yun Z, Dai Y, Zhang S. High Spy1 expression predicts poor prognosis in colorectal cancer. Cancer Manag Res 2018; 10:2757-2765. [PMID: 30147372 PMCID: PMC6101001 DOI: 10.2147/cmar.s169329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Spy1 (SPDYA) is a new discovered cell cycle protein capable of promoting cell proliferation dependent on cyclin-dependent kinase-2 activation. However, to the best of our knowledge, the expression of Spy1 in colorectal cancer (CRC) tissues remains virtually unknown. Materials and methods In this retrospective study, we investigated the mRNA and protein expression levels of Spy1 in CRC tissues and corresponding non-cancerous tissues with the analyses of quantitative real-time polymerase chain reaction, western blotting, and immunohistochemistry. In our research, the prognostic significances of Spy1 expression were further explored by univariate and multivariate survival analyses of 203 patients who were followed up. Results The results demonstrated that the levels of Spy1 mRNA were significantly higher in CRC tissues compared with corresponding non-cancerous tissues (p=0.0002). The results of immunohistochemistry demonstrated that the expressions of Spy1 were significantly associated with clinicopathological parameters, including T stage (χ2=7.126, p=0.028) and TNM stage (χ2=9.461, p=0.009). Kaplan-Meier analysis results indicated that high Spy1 expression (HR=2.573, p<0.001) and TNM stage (HR=1.494, p=0.011) were independent factors to predict poor prognosis for patients with CRC. Conclusion We concluded that high Spy1 expression is significantly associated with unfavorable prognosis in CRC and could serve as a potential prognostic marker in clinical diagnosis of CRC.
Collapse
Affiliation(s)
- Qin Jin
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, People's Republic of China,
| | - Gang Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, People's Republic of China,
| | - Luri Bao
- Department of Pathology, Inner Mongolia Medical University, Hohhot, People's Republic of China
| | - Yuzhen Ma
- Centre of Reproductive Medicine, Inner Mongolia Hospital, Hohhot, People's Republic of China
| | - Huidong Qi
- Medical School of Nantong University, Nantong, People's Republic of China
| | - Zhizhong Yun
- Centre of Reproductive Medicine, Inner Mongolia Hospital, Hohhot, People's Republic of China
| | - Yanfeng Dai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, People's Republic of China,
| | - Shu Zhang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, People's Republic of China,
| |
Collapse
|
7
|
Yu Q, Xue Y, Liu J, Xi Z, Li Z, Liu Y. Fibronectin Promotes the Malignancy of Glioma Stem-Like Cells Via Modulation of Cell Adhesion, Differentiation, Proliferation and Chemoresistance. Front Mol Neurosci 2018; 11:130. [PMID: 29706869 PMCID: PMC5908975 DOI: 10.3389/fnmol.2018.00130] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/29/2018] [Indexed: 12/12/2022] Open
Abstract
Glioma stem-like cells (GSCs) are regarded as the sources of oncogenesis, recurrence, invasion and chemoresistance in malignant gliomas. Growing evidence suggests that the microenvironment surrounding GSCs interacts with tumor cells to influence biological behavior; however, the functional mechanisms involved are still unclear. In the present study, we investigated the modulation of GSCs triggered by fibronectin (FN), a main component of the extracellular matrix (ECM), in terms of cell adhesion, differentiation, proliferation and chemoresistance. We demonstrated that pre-coated FN prompted increased adherence by GSCs, with increased matrix metallopeptidases (MMPs)-2 and -9 expression, in a concentration-dependent manner. Decreases in sox-2 and nestin levels, and increased levels of glial fibrillary acidic protein (GFAP) and β-tubulin were also found in GSCs, indicating cell differentiation driven by FN. Further investigation revealed that FN promoted cell growth, as demonstrated by the elevation of Ki-67, with the activation of p-ERK1/2 and cyclin D1 also evident. In addition, FN suppressed p53-mediated apoptosis and upregulated P-glycoprotein expression, making GSCs more chemoresistant to alkylating agents such as carmustine. In contrast, this effect was reversed by an integrin inhibitor, cilengitide. Activation of the focal adhesion kinase/paxillin/AKT signaling pathway was involved in the modulation of GSCs by FN. Focusing on the interactions between tumor cells and the ECM may be an encouraging aspect of research on novel chemotherapeutic therapies in future.
Collapse
Affiliation(s)
- Qi Yu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Yixue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Jing Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Zhuo Xi
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| |
Collapse
|
8
|
Zhuang K, Zhang L, Zhang X, Tang H, Zhang J, Yan Y, Han K, Guo H. Gastrin induces multidrug resistance via the degradation of p27Kip1 in the gastric carcinoma cell line SGC7901. Int J Oncol 2017; 50:2091-2100. [PMID: 28498440 DOI: 10.3892/ijo.2017.3983] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/27/2017] [Indexed: 11/06/2022] Open
Abstract
Multidrug resistance (MDR) is one of the major reasons for the failure of chemotherapy-based gastric carcinoma (GC) treatments, hence, biologically based therapies are urgently needed. Gastrin (GAS), a key gastrointestinal (GI) hormone, was found to be involved in tumor formation, progression, and metastasis. In this study, quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemical staining analysis revealed a high level of expression of GAS in drug-insensitive GC tissues (P<0.01) and similar results were revealed in GC cell lines SGC7901 and its multidrug-resistant variants SGC7901/VCR and SGC7901/ADR. We constructed a eukaryotic expression vector pCDNA3.1(+)/GAS for GAS overexpression and recombinant lentiviral vectors for specific siRNA (siGAS). Transfection of pCDNA3.1(+)/GAS increased (P<0.05) while transfection of siGAS (P<0.05) and co-treated with paclitaxel (TAX) and vincristine (VCR) combination (TAX-VCR) decreased (P<0.01) the cell viability of SGC7901, SGC7901/VCR and SGC7901/ADR. Apoptosis rates of SGC7901/VCR and SGC7901/ADR were reduced by pCDNA3.1(+)/GAS and increased by siGAS (P<0.05). The apoptosis rates of SGC7901/VCR, SGC7901/ADR and SGC7901 were all upregulated (P<0.01) when cells were co-treated with a combination of siGAS and TAX-VCR. Additionally, siGAS significantly downregulated the expression of Bcl-2 and multidrug-resistant associate protein (MRP1) and P-glycoprotein (Pgp) (P<0.05) in SGC7901/VCR and SGC7901/ADR cells. Moreover, GAS overexpression in SGC7901 cells significantly inhibited p27Kip1 expression but increased phosphorylation levels of p27Kip1 on Thr (187) and Ser (10) sites (P<0.05), as well as increasing nuclear accumulation of S-phase kinase-associated protein 2 (Skp2) and cytoplasmic accumulation of the Kip1 ubiquitination-promoting complex (KPC) (P<0.05). Silencing of Skp2 blocked the promoting effects of pCDNA3.1(+)/GAS on viability, the expression of MRP1 and Pgp and the inhibitory effects of pCDNA3.1(+)/GAS on apoptosis. In conclusion, we suggest that GAS contributes to the emergence of MDR of SGC7901 cells via the degradation of p27Kip1.
Collapse
Affiliation(s)
- Kun Zhuang
- Division of Gastroenterology, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China
| | - Lingxia Zhang
- Division of Gastroenterology, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China
| | - Xin Zhang
- Division of Gastroenterology, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China
| | - Hailing Tang
- Division of Gastroenterology, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China
| | - Jun Zhang
- Division of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yuan Yan
- Division of Gastroenterology, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China
| | - Kun Han
- Division of Gastroenterology, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China
| | - Hanqing Guo
- Division of Gastroenterology, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China
| |
Collapse
|
9
|
Huang Y, Xu X, Ji L, Wang Y, Wang S, Tang J, Huang X, Yang X, He Y, He S, Cheng C. Expression of far upstream element binding protein 1 in B‑cell non‑Hodgkin lymphoma is correlated with tumor growth and cell‑adhesion mediated drug resistance. Mol Med Rep 2016; 14:3759-68. [PMID: 27599538 DOI: 10.3892/mmr.2016.5718] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 08/09/2016] [Indexed: 11/05/2022] Open
Abstract
Cell adhesion‑mediated drug resistance (CAM‑DR) remains a major obstacle to the effectiveness of chemotherapeutic treatment of lymphoma. Far upstream element binding protein 1 (FBP1) is a multifunctional protein that is highly expressed in proliferating cells of several solid neoplasms; however, its expression and biological function in B‑cell lymphoma is largely unknown. FBP1 expression in both reactive lymphoid tissues and several B‑cell lymphomas, including follicular lymphoma and diffuse large B‑cell lymphoma were detected by immunohistochemistry analysis. FBP1 expression in B‑cell lymphoma was also associated with poor survival outcomes. Functionally, small interfering RNA‑mediated silencing of FBP1 was able to inhibit the proliferation of B‑cell lymphoma cells, resulting in G0/G1 phase cell cycle arrest. Furthermore, results of a cell adhesion assay demonstrated that adhesion to fibronectin or bone marrow stromal cells induced FBP1 expression, which in turn facilitated cell adhesion. Finally, FBP1 knockdown reversed CAM‑DR. These findings support a role for FBP1 in non‑Hodgkin lymphoma cell proliferation, adhesion and drug resistance, and may lead to the generation of a novel therapeutic approach targeting this molecule.
Collapse
Affiliation(s)
- Yuejiao Huang
- Department of Oncology, Affiliated Cancer Hospital of Nantong University, Nantong, Jiangsu 226361, P.R. China
| | - Xiaohong Xu
- Department of Oncology, Affiliated Cancer Hospital of Nantong University, Nantong, Jiangsu 226361, P.R. China
| | - Lili Ji
- Department of Pathology, Medical College, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yuchan Wang
- Department of Oncology, Affiliated Cancer Hospital of Nantong University, Nantong, Jiangsu 226361, P.R. China
| | - Shitao Wang
- Department of Pathology, Medical College, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jie Tang
- Department of Immunology, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xianting Huang
- Department of Immunology, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xiaojing Yang
- Department of Immunology, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yunhua He
- Department of Immunology, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Song He
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong, Jiangsu 226361, P.R. China
| | - Chun Cheng
- Department of Immunology, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
10
|
Liu J, Wang Y, He S, Xu X, Huang Y, Tang J, Wu Y, Miao X, He Y, Wang Q, Liang L, Cheng C. Expression of vaccinia-related kinase 1 (VRK1) accelerates cell proliferation but overcomes cell adhesion mediated drug resistance (CAM-DR) in multiple myeloma. Hematology 2016; 21:603-612. [PMID: 27319807 PMCID: PMC9491125 DOI: 10.1080/10245332.2016.1147678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Objective: Vaccinia-related kinase 1 (VRK1) has been reported to participate in the development of a variety of tumors. However, the role of VRK1 in multiple myeloma (MM) has not been investigated. The present study was undertaken to determine the expression and biologic function of VRK1 in human MM. Methods: First, we constructed a model of cell adhesion in MM, the mRNA and protein level of VRK1 in suspension and adhesion model was analyzed by RT-PCR and western blot. Then, flow cytometry assay and western blot were used to investigate the mechanism of VRK1 in the proliferation of MM cells. In vitro, following using shRNA interfering VRK1 expression, we performed adhesion assay and cell viability assay to determine the effect of VRK1 on adhesive rate and drug sensitivity. Results: VRK1 was lowly expressed in adherent MM cells and highly expressed in suspended cells. In addition, VRK1 was positively correlated with the proliferation of MM cells by regulating the expression of cell cycle-related protein, such as cyclinD1, CDK2 and p27kip1. Furthermore, VRK1 could reverse cell adhesion mediated drug resistance (CAM-DR) by down-regulating the ability of cell adhesion. Conclusion and discussion: Our data supports a role for VRK1 in MM cell proliferation, adhesion, and drug resistance, and it may pave the way for a novel therapeutic approach for CAM-DR in MM.
Collapse
Affiliation(s)
- Jing Liu
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yuchan Wang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Song He
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong, Jiangsu Province 226001, China
| | - Xiaohong Xu
- Department of Hematology, Affiliated Cancer Hospital of Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yuejiao Huang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Jie Tang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yaxun Wu
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong, Jiangsu Province 226001, China
| | - Xiaobing Miao
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yunhua He
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Qiru Wang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Li Liang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Chun Cheng
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, Jiangsu Province 226001, China
| |
Collapse
|
11
|
Cifola I, Lionetti M, Pinatel E, Todoerti K, Mangano E, Pietrelli A, Fabris S, Mosca L, Simeon V, Petrucci MT, Morabito F, Offidani M, Di Raimondo F, Falcone A, Caravita T, Battaglia C, De Bellis G, Palumbo A, Musto P, Neri A. Whole-exome sequencing of primary plasma cell leukemia discloses heterogeneous mutational patterns. Oncotarget 2016; 6:17543-58. [PMID: 26046463 PMCID: PMC4627327 DOI: 10.18632/oncotarget.4028] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 05/11/2015] [Indexed: 02/04/2023] Open
Abstract
Primary plasma cell leukemia (pPCL) is a rare and aggressive form of plasma cell dyscrasia and may represent a valid model for high-risk multiple myeloma (MM). To provide novel information concerning the mutational profile of this disease, we performed the whole-exome sequencing of a prospective series of 12 pPCL cases included in a Phase II multicenter clinical trial and previously characterized at clinical and molecular levels. We identified 1, 928 coding somatic non-silent variants on 1, 643 genes, with a mean of 166 variants per sample, and only few variants and genes recurrent in two or more samples. An excess of C > T transitions and the presence of two main mutational signatures (related to APOBEC over-activity and aging) occurring in different translocation groups were observed. We identified 14 candidate cancer driver genes, mainly involved in cell-matrix adhesion, cell cycle, genome stability, RNA metabolism and protein folding. Furthermore, integration of mutation data with copy number alteration profiles evidenced biallelically disrupted genes with potential tumor suppressor functions. Globally, cadherin/Wnt signaling, extracellular matrix and cell cycle checkpoint resulted the most affected functional pathways. Sequencing results were finally combined with gene expression data to better elucidate the biological relevance of mutated genes. This study represents the first whole-exome sequencing screen of pPCL and evidenced a remarkable genetic heterogeneity of mutational patterns. This may provide a contribution to the comprehension of the pathogenetic mechanisms associated with this aggressive form of PC dyscrasia and potentially with high-risk MM.
Collapse
Affiliation(s)
- Ingrid Cifola
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Marta Lionetti
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,Hematology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Eva Pinatel
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Katia Todoerti
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture (PZ), Italy
| | - Eleonora Mangano
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | | | - Sonia Fabris
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,Hematology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Mosca
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,Hematology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Vittorio Simeon
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture (PZ), Italy
| | - Maria Teresa Petrucci
- Hematology, Department of Cellular Biotechnologies and Hematology, La Sapienza University, Rome, Italy
| | | | - Massimo Offidani
- Hematologic Clinic, Azienda Ospedaliero-Universitaria Ospedali Riuniti di Ancona, Ancona, Italy
| | - Francesco Di Raimondo
- Department of Biomedical Sciences, Division of Hematology, Ospedale Ferrarotto, University of Catania, Catania, Italy
| | - Antonietta Falcone
- Hematology Unit, IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, Italy
| | - Tommaso Caravita
- Department of Hematology, Ospedale S. Eugenio, Tor Vergata University, Rome, Italy
| | - Cristina Battaglia
- Institute for Biomedical Technologies, National Research Council, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Gianluca De Bellis
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Antonio Palumbo
- Division of Hematology, University of Torino, A.O.U. San Giovanni Battista, Torino, Italy
| | - Pellegrino Musto
- Scientific Direction, IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture (PZ), Italy
| | - Antonino Neri
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,Hematology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
12
|
Tang J, Zhou H, Wang C, Fei X, Zhu L, Huang Y, He Y, Liu J, Miao X, Wu Y, Wang Y. Cell adhesion downregulates the expression of Homer1b/c and contributes to drug resistance in multiple myeloma cells. Oncol Rep 2015; 35:1875-83. [PMID: 26718835 DOI: 10.3892/or.2015.4532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/08/2015] [Indexed: 11/06/2022] Open
Abstract
Previous studies have demonstrated that Homer1b/c plays an important pro-apoptotic role through classical mitochondrial apoptotic pathway. The present study was undertaken to determine the expression and functional significance of Homer1b/c in multiple myeloma (MM). We found that Homer1b/c was lowly expressed in MM cell apoptotic model induced by doxorubicin. The positive role of Homer1b/c in cell apoptosis was further confirmed by knocking down Homer1b/c. Further study confirmed that Homer1b/c was able to affect the CAM-DR via pro-apoptotic activity regulating the ability of cell adhesion. Collectively, these data indicate that Homer1b/c may represent a good candidate for pursuing clinical trial in MM.
Collapse
Affiliation(s)
- Jie Tang
- Liyang People's Hospital, Liyang, Jiangsu 213300, P.R. China
| | - Hongxuan Zhou
- Liyang People's Hospital, Liyang, Jiangsu 213300, P.R. China
| | - Chun Wang
- Liyang People's Hospital, Liyang, Jiangsu 213300, P.R. China
| | - Xiaodong Fei
- Liyang People's Hospital, Liyang, Jiangsu 213300, P.R. China
| | - Liqun Zhu
- Liyang People's Hospital, Liyang, Jiangsu 213300, P.R. China
| | - Yuejiao Huang
- Nantong University Cancer Hospital, Nantong, Jiangsu 226001, P.R. China
| | - Yunhua He
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jing Liu
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xiaobing Miao
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yaxun Wu
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yuchan Wang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
13
|
Lu S, Liu R, Su M, Wei Y, Yang S, He S, Wang X, Qiang F, Chen C, Zhao S, Zhang W, Xu P, Mao G. Spy1 participates in the proliferation and apoptosis of epithelial ovarian cancer. J Mol Histol 2015; 47:47-57. [DOI: 10.1007/s10735-015-9646-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/25/2015] [Indexed: 12/16/2022]
|
14
|
Tang J, Ji L, Wang Y, Huang Y, Yin H, He Y, Liu J, Miao X, Wu Y, Xu X, He S, Cheng C. Cell adhesion down-regulates the expression of vacuolar protein sorting 4B (VPS4B) and contributes to drug resistance in multiple myeloma cells. Int J Hematol 2015; 102:25-34. [DOI: 10.1007/s12185-015-1783-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 03/09/2015] [Accepted: 03/17/2015] [Indexed: 12/13/2022]
|
15
|
He S, Huang Y, Wang Y, Tang J, Song Y, Yu X, Ma J, Wang S, Yin H, Li Q, Ji L, Xu X. Histamine-releasing factor/translationally controlled tumor protein plays a role in induced cell adhesion, apoptosis resistance and chemoresistance in non-Hodgkin lymphomas. Leuk Lymphoma 2015; 56:2153-61. [PMID: 25363345 DOI: 10.3109/10428194.2014.981173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mounting evidence has proved that cellular adhesion confers resistance to chemotherapy in multiple lymphomas. The molecular mechanism underlying cell adhesion-mediated drug resistance (CAM-DR) is, however, poorly understood. In this study, we investigated the expression and biologic function of histamine-releasing factor (HRF) in non-Hodgkin lymphomas (NHLs). Clinically, by immunohistochemistry analysis we observed obvious up-regulation of HRF in NHLs including diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL) and natural killer (NK)/T-cell lymphoma. Functionally, overexpression and knockdown of HRF demonstrated the antiapoptotic effect of HRF in NHL cells, which may be associated with activation of the p-CREB/BCL-2 signaling pathway. Moreover, cell adhesion assay demonstrated that adhesion to fibronectin (FN) or HS-5 up-regulated HRF expression, while knockdown of HRF resulted in decreased cell adhesion, which led to reversed CAM-DR. Our finding supports the role of HRF in NHL cell apoptosis, adhesion and drug resistance, and may provide a clinical therapeutic target for CAM-DR in NHL.
Collapse
Affiliation(s)
- Song He
- Department of Oncology, Affiliated Cancer Hospital of Nantong University, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target , Nantong, Jiangsu , China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Wang Y, Huang Y, Xu X, Tang J, Huang X, Zhu J, Liu J, Miao X, Wu Y, Yang F, Ji L, He S. Expression of small glutamine-rich TPR-containing protein A (SGTA) in Non-Hodgkin's Lymphomas promotes tumor proliferation and reverses cell adhesion-mediated drug resistance (CAM-DR). Leuk Res 2014; 38:955-63. [PMID: 24974147 DOI: 10.1016/j.leukres.2014.05.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Revised: 05/09/2014] [Accepted: 05/21/2014] [Indexed: 12/16/2022]
Abstract
The expression and biologic function of SGTA in Non-Hodgkin's Lymphomas (NHL) was investigated in this study. Clinically, by immunohistochemistry analysis we detected SGTA expression in both reactive lymphoid tissues and NHL tissues. In addition, we also correlated high expression of SGTA with poor prognosis. Functionally, SGTA expression was positively related with cell proliferation and negative related with cell adhesion. Finally, SGTA knockdown induced adhesion-mediated drug resistance. Our finding supports a role of SGTA in NHL cell proliferation, adhesion and drug resistance, and it may pave the way for a novel therapeutic approach for CAM-DR in NHL.
Collapse
Affiliation(s)
- Yuchan Wang
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong 226361, Jiangsu, China
| | - Yuejiao Huang
- Department of Pathology, Medical College, Nantong University, Nantong 226001, Jiangsu, China
| | - Xiaohong Xu
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong 226361, Jiangsu, China
| | - Jie Tang
- Department of Pathology, Medical College, Nantong University, Nantong 226001, Jiangsu, China
| | - Xianting Huang
- Department of Pathology, Medical College, Nantong University, Nantong 226001, Jiangsu, China
| | - Junya Zhu
- Department of Pathology, Medical College, Nantong University, Nantong 226001, Jiangsu, China
| | - Jing Liu
- Department of Pathology, Medical College, Nantong University, Nantong 226001, Jiangsu, China
| | - Xiaobing Miao
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong 226361, Jiangsu, China
| | - Yaxun Wu
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong 226361, Jiangsu, China
| | - Fan Yang
- Department of Pediatrics, Medical College, Nantong University, Nantong 226001, Jiangsu, China
| | - Lili Ji
- Department of Pathology, Medical College, Nantong University, Nantong 226001, Jiangsu, China.
| | - Song He
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong 226361, Jiangsu, China.
| |
Collapse
|
17
|
Westhoff MA, Brühl O, Nonnenmacher L, Karpel-Massler G, Debatin KM. Killing me softly--future challenges in apoptosis research. Int J Mol Sci 2014; 15:3746-67. [PMID: 24595238 PMCID: PMC3975365 DOI: 10.3390/ijms15033746] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/10/2014] [Accepted: 02/19/2014] [Indexed: 12/28/2022] Open
Abstract
The induction of apoptosis, a highly regulated and clearly defined mode of cell dying, is a vital tenet of modern cancer therapy. In this review we focus on three aspects of apoptosis research which we believe are the most crucial and most exciting areas currently investigated and that will need to be better understood in order to enhance the efficacy of therapeutic measures. First, we discuss which target to select for cancer therapy and argue that not the cancer cell as such, but its interaction with the microenvironment is a more promising and genetically stable site of attack. Second, the complexity of combination therapy is elucidated using the PI3-K-mediated signaling network as a specific example. Here we show that the current clinical approach to sensitize malignancies to apoptosis by maximal, prolonged inhibition of so-called survival pathways can actually be counter productive. Third, we propose that under certain conditions which will need to be clearly defined in future, chronification of a tumor might be preferable to the attempt at a cure. Finally, we discuss further problems with utilizing apoptosis induction in cancer therapy and propose a novel potential therapeutic approach that combines the previously discussed features.
Collapse
Affiliation(s)
- Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm 89075, Germany.
| | - Oliver Brühl
- Laboratorio Analisi Sicilia Catania, Lentini (SR) 96016, Italy.
| | - Lisa Nonnenmacher
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm 89075, Germany.
| | | | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm 89075, Germany.
| |
Collapse
|