1
|
Veryaskina YA, Titov SE, Kovynev IB, Pospelova TI, Fyodorova SS, Shebunyaeva YY, Sumenkova DV, Zhimulev IF. MicroRNA Expression Profile in Bone Marrow and Lymph Nodes in B-Cell Lymphomas. Int J Mol Sci 2023; 24:15082. [PMID: 37894763 PMCID: PMC10606460 DOI: 10.3390/ijms242015082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Hodgkin's lymphomas (HL) and the majority of non-Hodgkin's lymphomas (NHL) derive from different stages of B-cell differentiation. MicroRNA (miRNA) expression profiles change during lymphopoiesis. Thus, miRNA expression analysis can be used as a reliable diagnostic tool to differentiate tumors. In addition, the identification of miRNA's role in lymphopoiesis impairment is an important fundamental task. The aim of this study was to analyze unique miRNA expression profiles in different types of B-cell lymphomas. We analyzed the expression levels of miRNA-18a, -20a, -96, -182, -183, -26b, -34a, -148b, -9, -150, -451a, -23b, -141, and -128 in lymph nodes (LNs) in the following cancer samples: HL (n = 41), diffuse large B-cell lymphoma (DLBCL) (n = 51), mantle cell lymphoma (MCL) (n = 15), follicular lymphoma (FL) (n = 12), and lymphadenopathy (LA) (n = 37), as well as bone marrow (BM) samples: HL (n = 11), DLBCL (n = 42), MCL (n = 14), FL (n = 16), and non-cancerous blood diseases (NCBD) (n = 43). The real-time RT-PCR method was used for analysis. An increase in BM expression levels of miRNA-26b, -150, and -141 in MCL (p < 0.01) and a decrease in BM levels of the miR-183-96-182 cluster and miRNA-451a in DLBCL (p < 0.01) were observed in comparison to NCBD. We also obtained data on increased LN levels of the miR-183-96-182 cluster in MCL (p < 0.01) and miRNA-18a, miRNA-96, and miRNA-9 in FL (p < 0.01), as well as decreased LN expression of miRNA-150 in DLBCL (p < 0.01), and miRNA-182, miRNA-150, and miRNA-128 in HL (p < 0.01). We showed that miRNA expression profile differs between BM and LNs depending on the type of B-cell lymphoma. This can be due to the effect of the tumor microenvironment.
Collapse
Affiliation(s)
- Yuliya A. Veryaskina
- Department of the Structure and Function of Chromosomes, Laboratory of Molecular Genetics, Institute of Molecular and Cellular Biology, SB RAS, 630090 Novosibirsk, Russia; (S.E.T.); (I.F.Z.)
- Laboratory of Gene Engineering, Institute of Cytology and Genetics, SB RAS, 630090 Novosibirsk, Russia
| | - Sergei E. Titov
- Department of the Structure and Function of Chromosomes, Laboratory of Molecular Genetics, Institute of Molecular and Cellular Biology, SB RAS, 630090 Novosibirsk, Russia; (S.E.T.); (I.F.Z.)
- AO Vector-Best, 630117 Novosibirsk, Russia
| | - Igor B. Kovynev
- Department of Therapy, Hematology and Transfusiology, Novosibirsk State Medical University, 630091 Novosibirsk, Russia; (I.B.K.); (T.I.P.); (S.S.F.); (Y.Y.S.); (D.V.S.)
| | - Tatiana I. Pospelova
- Department of Therapy, Hematology and Transfusiology, Novosibirsk State Medical University, 630091 Novosibirsk, Russia; (I.B.K.); (T.I.P.); (S.S.F.); (Y.Y.S.); (D.V.S.)
| | - Sofya S. Fyodorova
- Department of Therapy, Hematology and Transfusiology, Novosibirsk State Medical University, 630091 Novosibirsk, Russia; (I.B.K.); (T.I.P.); (S.S.F.); (Y.Y.S.); (D.V.S.)
| | - Yana Yu. Shebunyaeva
- Department of Therapy, Hematology and Transfusiology, Novosibirsk State Medical University, 630091 Novosibirsk, Russia; (I.B.K.); (T.I.P.); (S.S.F.); (Y.Y.S.); (D.V.S.)
| | - Dina V. Sumenkova
- Department of Therapy, Hematology and Transfusiology, Novosibirsk State Medical University, 630091 Novosibirsk, Russia; (I.B.K.); (T.I.P.); (S.S.F.); (Y.Y.S.); (D.V.S.)
| | - Igor F. Zhimulev
- Department of the Structure and Function of Chromosomes, Laboratory of Molecular Genetics, Institute of Molecular and Cellular Biology, SB RAS, 630090 Novosibirsk, Russia; (S.E.T.); (I.F.Z.)
| |
Collapse
|
2
|
Hue SSS, Jin Y, Cheng H, Bin Masroni MS, Tang LWT, Ho YH, Ong DBL, Leong SM, Tan SY. Tissue-Specific microRNA Expression Profiling to Derive Novel Biomarkers for the Diagnosis and Subtyping of Small B-Cell Lymphomas. Cancers (Basel) 2023; 15:cancers15020453. [PMID: 36672402 PMCID: PMC9856483 DOI: 10.3390/cancers15020453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/23/2022] [Accepted: 12/30/2022] [Indexed: 01/13/2023] Open
Abstract
Accurate diagnosis of the most common histological subtypes of small B-cell lymphomas is challenging due to overlapping morphological features and limitations of ancillary testing, which involves a large number of immunostains and molecular investigations. In addition, a common diagnostic challenge is to distinguish reactive lymphoid hyperplasia that do not require additional stains from such lymphomas that need ancillary investigations. We investigated if tissue-specific microRNA (miRNA) expression may provide potential biomarkers to improve the pathology diagnostic workflow. This study seeks to distinguish reactive lymphoid proliferation (RL) from small B-cell lymphomas, and to further distinguish the four main subtypes of small B-cell lymphomas. Two datasets were included: a discovery cohort (n = 100) to screen for differentially expressed miRNAs and a validation cohort (n = 282) to develop classification models. The models were evaluated for accuracy in subtype prediction. MiRNA gene set enrichment was also performed to identify differentially regulated pathways. 306 miRNAs were detected and quantified, resulting in 90-miRNA classification models from which smaller panels of miRNAs biomarkers with good accuracy were derived. Bioinformatic analysis revealed the upregulation of known and other potentially relevant signaling pathways in such lymphomas. In conclusion, this study suggests that miRNA expression profiling may serve as a promising tool to aid the diagnosis of common lymphoid lesions.
Collapse
Affiliation(s)
- Susan Swee-Shan Hue
- Department of Pathology, National University Hospital, Level 3 NUH Main Building, 21 Lower Kent Ridge Road, Singapore 119077, Singapore
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Level 3 NUH Main Building, 21 Lower Kent Ridge Road, Singapore 119077, Singapore
| | - Yu Jin
- MiRXES Pte Ltd., 2 Tukang Innovation Grove, JTC MedTech Hub, #08-01, Singapore 618305, Singapore
| | - He Cheng
- MiRXES Pte Ltd., 2 Tukang Innovation Grove, JTC MedTech Hub, #08-01, Singapore 618305, Singapore
| | - Muhammad Sufyan Bin Masroni
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Level 3 NUH Main Building, 21 Lower Kent Ridge Road, Singapore 119077, Singapore
| | - Lloyd Wei Tat Tang
- Department of Pharmacy, Faculty of Science, National University of Singapore, Block S4A, Level 3, 18 Science Drive 4, Singapore 117543, Singapore
| | - Yong Howe Ho
- Department of Pathology, Tan Tock Seng Hospital, Level 2 Podium Block, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
| | - Diana Bee-Lan Ong
- Department of Pathology, University of Malaya, Lembah Pantai, Kuala Lumpur 50603, Malaysia
| | - Sai Mun Leong
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Level 3 NUH Main Building, 21 Lower Kent Ridge Road, Singapore 119077, Singapore
| | - Soo Yong Tan
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Level 3 NUH Main Building, 21 Lower Kent Ridge Road, Singapore 119077, Singapore
- Advanced Molecular Pathology Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
- Correspondence:
| |
Collapse
|
3
|
Kalkusova K, Taborska P, Stakheev D, Smrz D. The Role of miR-155 in Antitumor Immunity. Cancers (Basel) 2022; 14:5414. [PMID: 36358832 PMCID: PMC9659277 DOI: 10.3390/cancers14215414] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 09/19/2023] Open
Abstract
MicroRNAs belong to a group of short non-coding RNA molecules that are involved in the regulation of gene expression at multiple levels. Their function was described two decades ago, and, since then, microRNAs have become a rapidly developing field of research. Their participation in the regulation of cellular processes, such as proliferation, apoptosis, cell growth, and migration, made microRNAs attractive for cancer research. Moreover, as a single microRNA can simultaneously target multiple molecules, microRNAs offer a unique advantage in regulating multiple cellular processes in different cell types. Many of these cell types are tumor cells and the cells of the immune system. One of the most studied microRNAs in the context of cancer and the immune system is miR-155. MiR-155 plays a role in modulating innate and adaptive immune mechanisms in distinct immune cell types. As such, miR-155 can be part of the communication between the tumor and immune cells and thus impact the process of tumor immunoediting. Several studies have already revealed its effect on antitumor immune responses, and the targeting of this molecule is increasingly implemented in cancer immunotherapy. In this review, we discuss the current knowledge of miR-155 in the regulation of antitumor immunity and the shaping of the tumor microenvironment, and the plausible implementation of miR-155 targeting in cancer therapy.
Collapse
Affiliation(s)
- Katerina Kalkusova
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, 150 06 Prague, Czech Republic
| | - Pavla Taborska
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, 150 06 Prague, Czech Republic
| | - Dmitry Stakheev
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, 150 06 Prague, Czech Republic
- Laboratory of Immunotherapy, Institute of Microbiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Daniel Smrz
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, 150 06 Prague, Czech Republic
- Laboratory of Immunotherapy, Institute of Microbiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| |
Collapse
|
4
|
Ayón-Pérez MF, Gómez-Gómez Y, Organista-Nava J, Leyva-Vázquez MA, Zambrano-Zaragoza JF, Reyes-Fregoso JC, Agraz-Cibrián JM, Gutiérrez-Franco J, Victorio-De Los Santos M, Vázquez-Reyes A. Association Between MIR3117 and MIR612 Genes Polymorphisms with Childhood Acute Lymphoblastic Leukemia in the Mexican Population. Arch Med Res 2022; 53:603-609. [PMID: 36002354 DOI: 10.1016/j.arcmed.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/07/2022] [Accepted: 07/15/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Acute lymphoblastic leukemia (ALL) is the most common childhood cancer in the world, which is associated with a wide spectrum of factors that play an important role in epidemiology, risk stratification, and therapeutic intervention. Several studies have shown the role of microRNAs (miRNAs) in the development of the disease. Genetic variations such as single-nucleotide polymorphisms (SNPs) in miRNAs can alter their function and lead to alter the expression of their target genes. OBJECTIVE The aim of this study was to evaluate the association of rs12402181 in MIR3117 and rs12803915 in MIR612 with the risk of childhood preB-ALL in Mexican population. MATERIAL AND METHODS DNA from 148 children (<18 years old) diagnosed with preB-ALL and 172 samples from participants in control group were included in the present study. Genotyping of the rs12402181 and rs12803915 polymorphisms was carried out by Real-Time PCR. To estimate the risk factor, the multiple genetic models co-dominant, dominant, and recessive were determined in both polymorphisms. RESULTS In dominant genetic model from rs12402181, a high risk of susceptibility to ALL was observed (OR = 2.03, 95% CI = 1.27-3.22, p = 0.003). In the analysis adjusted for gender, a significant increase in the risk of ALL was maintained (OR = 2.03, 95% CI = 1.28-3.24, p = 0.003). The rs12803915 polymorphism was no associated with the risk of susceptibility to preB-ALL in any of the genetic models using in this study. CONCLUSIONS Our data indicated that the A allele of the rs12402181 polymorphism may be considered as a genetic biomarker of preB-ALL susceptibility. Likewise, it was identified that the A allele of the rs12402181 polymorphism is an independent risk factor for ALL.
Collapse
Affiliation(s)
- Miriam Fabiola Ayón-Pérez
- Laboratorios de Investigación en Biología Molecular e Inmunología, Unidad Académica de Ciencias Químico-Biológicas y Farmacéuticas. Universidad Autónoma de Nayarit, Tepic, Nayarit, México
| | - Yazmín Gómez-Gómez
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
| | - Jorge Organista-Nava
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
| | - Marco Antonio Leyva-Vázquez
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
| | - José Francisco Zambrano-Zaragoza
- Laboratorio de Inmunología, Unidad Académica de Ciencias Químico-Biológicas y Farmacéuticas, Universidad Autónoma de Nayarit, Tepic, Nayarit, México
| | - Julio César Reyes-Fregoso
- Laboratorios de Investigación en Biología Molecular e Inmunología, Unidad Académica de Ciencias Químico-Biológicas y Farmacéuticas. Universidad Autónoma de Nayarit, Tepic, Nayarit, México
| | - Juan Manuel Agraz-Cibrián
- Laboratorio de Inmunología, Unidad Académica de Ciencias Químico-Biológicas y Farmacéuticas, Universidad Autónoma de Nayarit, Tepic, Nayarit, México
| | - Jorge Gutiérrez-Franco
- Laboratorio de Inmunología, Unidad Académica de Ciencias Químico-Biológicas y Farmacéuticas, Universidad Autónoma de Nayarit, Tepic, Nayarit, México
| | - Marcelo Victorio-De Los Santos
- Laboratorios de Investigación en Biología Molecular e Inmunología, Unidad Académica de Ciencias Químico-Biológicas y Farmacéuticas. Universidad Autónoma de Nayarit, Tepic, Nayarit, México
| | - Alejandro Vázquez-Reyes
- Laboratorios de Investigación en Biología Molecular e Inmunología, Unidad Académica de Ciencias Químico-Biológicas y Farmacéuticas. Universidad Autónoma de Nayarit, Tepic, Nayarit, México.
| |
Collapse
|
5
|
Dar MA, Arafah A, Bhat KA, Khan A, Khan MS, Ali A, Ahmad SM, Rashid SM, Rehman MU. Multiomics technologies: role in disease biomarker discoveries and therapeutics. Brief Funct Genomics 2022; 22:76-96. [PMID: 35809340 DOI: 10.1093/bfgp/elac017] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/21/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Medical research has been revolutionized after the publication of the full human genome. This was the major landmark that paved the way for understanding the biological functions of different macro and micro molecules. With the advent of different high-throughput technologies, biomedical research was further revolutionized. These technologies constitute genomics, transcriptomics, proteomics, metabolomics, etc. Collectively, these high-throughputs are referred to as multi-omics technologies. In the biomedical field, these omics technologies act as efficient and effective tools for disease diagnosis, management, monitoring, treatment and discovery of certain novel disease biomarkers. Genotyping arrays and other transcriptomic studies have helped us to elucidate the gene expression patterns in different biological states, i.e. healthy and diseased states. Further omics technologies such as proteomics and metabolomics have an important role in predicting the role of different biological molecules in an organism. It is because of these high throughput omics technologies that we have been able to fully understand the role of different genes, proteins, metabolites and biological pathways in a diseased condition. To understand a complex biological process, it is important to apply an integrative approach that analyses the multi-omics data in order to highlight the possible interrelationships of the involved biomolecules and their functions. Furthermore, these omics technologies offer an important opportunity to understand the information that underlies disease. In the current review, we will discuss the importance of omics technologies as promising tools to understand the role of different biomolecules in diseases such as cancer, cardiovascular diseases, neurodegenerative diseases and diabetes. SUMMARY POINTS
Collapse
|
6
|
Romano R, Cillo F, Moracas C, Pignata L, Nannola C, Toriello E, De Rosa A, Cirillo E, Coppola E, Giardino G, Brunetti-Pierri N, Riccio A, Pignata C. Epigenetic Alterations in Inborn Errors of Immunity. J Clin Med 2022; 11:1261. [PMID: 35268351 PMCID: PMC8910960 DOI: 10.3390/jcm11051261] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 02/07/2023] Open
Abstract
The epigenome bridges environmental factors and the genome, fine-tuning the process of gene transcription. Physiological programs, including the development, maturation and maintenance of cellular identity and function, are modulated by intricate epigenetic changes that encompass DNA methylation, chromatin remodeling, histone modifications and RNA processing. The collection of genome-wide DNA methylation data has recently shed new light into the potential contribution of epigenetics in pathophysiology, particularly in the field of immune system and host defense. The study of patients carrying mutations in genes encoding for molecules involved in the epigenetic machinery has allowed the identification and better characterization of environment-genome interactions via epigenetics as well as paving the way for the development of new potential therapeutic options. In this review, we summarize current knowledge of the role of epigenetic modifications in the immune system and outline their potential involvement in the pathogenesis of inborn errors of immunity.
Collapse
Affiliation(s)
- Roberta Romano
- Department of Translational Medical Sciences, Università degli Studi di Napoli “Federico II”, 80125 Naples, Italy; (R.R.); (F.C.); (C.M.); (C.N.); (E.T.); (A.D.R.); (E.C.); (E.C.); (G.G.); (N.B.-P.)
| | - Francesca Cillo
- Department of Translational Medical Sciences, Università degli Studi di Napoli “Federico II”, 80125 Naples, Italy; (R.R.); (F.C.); (C.M.); (C.N.); (E.T.); (A.D.R.); (E.C.); (E.C.); (G.G.); (N.B.-P.)
| | - Cristina Moracas
- Department of Translational Medical Sciences, Università degli Studi di Napoli “Federico II”, 80125 Naples, Italy; (R.R.); (F.C.); (C.M.); (C.N.); (E.T.); (A.D.R.); (E.C.); (E.C.); (G.G.); (N.B.-P.)
| | - Laura Pignata
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
| | - Chiara Nannola
- Department of Translational Medical Sciences, Università degli Studi di Napoli “Federico II”, 80125 Naples, Italy; (R.R.); (F.C.); (C.M.); (C.N.); (E.T.); (A.D.R.); (E.C.); (E.C.); (G.G.); (N.B.-P.)
| | - Elisabetta Toriello
- Department of Translational Medical Sciences, Università degli Studi di Napoli “Federico II”, 80125 Naples, Italy; (R.R.); (F.C.); (C.M.); (C.N.); (E.T.); (A.D.R.); (E.C.); (E.C.); (G.G.); (N.B.-P.)
| | - Antonio De Rosa
- Department of Translational Medical Sciences, Università degli Studi di Napoli “Federico II”, 80125 Naples, Italy; (R.R.); (F.C.); (C.M.); (C.N.); (E.T.); (A.D.R.); (E.C.); (E.C.); (G.G.); (N.B.-P.)
| | - Emilia Cirillo
- Department of Translational Medical Sciences, Università degli Studi di Napoli “Federico II”, 80125 Naples, Italy; (R.R.); (F.C.); (C.M.); (C.N.); (E.T.); (A.D.R.); (E.C.); (E.C.); (G.G.); (N.B.-P.)
| | - Emma Coppola
- Department of Translational Medical Sciences, Università degli Studi di Napoli “Federico II”, 80125 Naples, Italy; (R.R.); (F.C.); (C.M.); (C.N.); (E.T.); (A.D.R.); (E.C.); (E.C.); (G.G.); (N.B.-P.)
| | - Giuliana Giardino
- Department of Translational Medical Sciences, Università degli Studi di Napoli “Federico II”, 80125 Naples, Italy; (R.R.); (F.C.); (C.M.); (C.N.); (E.T.); (A.D.R.); (E.C.); (E.C.); (G.G.); (N.B.-P.)
| | - Nicola Brunetti-Pierri
- Department of Translational Medical Sciences, Università degli Studi di Napoli “Federico II”, 80125 Naples, Italy; (R.R.); (F.C.); (C.M.); (C.N.); (E.T.); (A.D.R.); (E.C.); (E.C.); (G.G.); (N.B.-P.)
| | - Andrea Riccio
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
| | - Claudio Pignata
- Department of Translational Medical Sciences, Università degli Studi di Napoli “Federico II”, 80125 Naples, Italy; (R.R.); (F.C.); (C.M.); (C.N.); (E.T.); (A.D.R.); (E.C.); (E.C.); (G.G.); (N.B.-P.)
| |
Collapse
|
7
|
Zhang Y, Skinner JP, Chong MM. Expression of the miR-17~92a cluster of microRNAs by regulatory T cells controls blood glucose homeostasis. Immunol Cell Biol 2021; 100:101-111. [PMID: 34888953 DOI: 10.1111/imcb.12513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/18/2021] [Accepted: 12/07/2021] [Indexed: 11/28/2022]
Abstract
Regulatory T cells (Tregs) are a specialized immune cell type that play important roles in regulating immune responses. However, those found in adipose tissue, particularly visceral adipose tissue (VAT), have also been shown to exert metabolic regulatory functions. This study investigated the requirement of the miR-17~92a cluster of microRNAs in VAT Tregs and the impact on blood glucose. This cluster of microRNAs is one that we previously showed to be important for the fitness of Tregs found in secondary lymphoid organs. It was found that male mice with Treg-specific miR-17~92a deficiency are resistant to impaired glucose tolerance induced by a high-fat diet. However, high-fat feeding still impaired glucose tolerance in female mice with Treg-specific miR-17~92a deficiency. There was an increase in KLRG1- naïve Tregs and a loss of KLRG1+ terminally differentiated Tregs in the VAT of Treg-specific miR-17~92a-deficient male mice but not in female mice. The protection of male mice from high-fat feeding was also associated with increased interleukin-10 and reduced interferonγ expression by conventional CD4+ T cells and reduced interleukin-2 expression by both CD4+ and CD8+ T cells in the VAT. Together this suggests that expression of miR-17~92a by VAT Tregs regulates the effector phenotype of conventional T cells and in turn the metabolic function of adipose tissue and blood glucose homeostasis.
Collapse
Affiliation(s)
- Yangnan Zhang
- St Vincent's Institute of Medical Research, Fitzroy, VIC, Australia.,Department of Medicine (St Vincent's), University of Melbourne, Fitzroy, VIC, Australia
| | - Jarrod P Skinner
- St Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Mark Mw Chong
- St Vincent's Institute of Medical Research, Fitzroy, VIC, Australia.,Department of Medicine (St Vincent's), University of Melbourne, Fitzroy, VIC, Australia
| |
Collapse
|
8
|
Hampel H, Nisticò R, Seyfried NT, Levey AI, Modeste E, Lemercier P, Baldacci F, Toschi N, Garaci F, Perry G, Emanuele E, Valenzuela PL, Lucia A, Urbani A, Sancesario GM, Mapstone M, Corbo M, Vergallo A, Lista S. Omics sciences for systems biology in Alzheimer's disease: State-of-the-art of the evidence. Ageing Res Rev 2021; 69:101346. [PMID: 33915266 DOI: 10.1016/j.arr.2021.101346] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 04/06/2021] [Accepted: 04/22/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is characterized by non-linear, genetic-driven pathophysiological dynamics with high heterogeneity in biological alterations and disease spatial-temporal progression. Human in-vivo and post-mortem studies point out a failure of multi-level biological networks underlying AD pathophysiology, including proteostasis (amyloid-β and tau), synaptic homeostasis, inflammatory and immune responses, lipid and energy metabolism, oxidative stress. Therefore, a holistic, systems-level approach is needed to fully capture AD multi-faceted pathophysiology. Omics sciences - genomics, epigenomics, transcriptomics, proteomics, metabolomics, lipidomics - embedded in the systems biology (SB) theoretical and computational framework can generate explainable readouts describing the entire biological continuum of a disease. Such path in Neurology is encouraged by the promising results of omics sciences and SB approaches in Oncology, where stage-driven pathway-based therapies have been developed in line with the precision medicine paradigm. Multi-omics data integrated in SB network approaches will help detect and chart AD upstream pathomechanistic alterations and downstream molecular effects occurring in preclinical stages. Finally, integrating omics and neuroimaging data - i.e., neuroimaging-omics - will identify multi-dimensional biological signatures essential to track the clinical-biological trajectories, at the subpopulation or even individual level.
Collapse
|
9
|
MicroRNA transcriptome analysis of oriental river prawn Macrobrachium nipponense in responding to starvation stress. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 38:100820. [PMID: 33676153 DOI: 10.1016/j.cbd.2021.100820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/03/2021] [Accepted: 02/23/2021] [Indexed: 12/15/2022]
Abstract
Food deprivation or fasting is an important environmental factor, and a regular occurrence in both natural aquatic habitats and artificial ponds. However, the potential immunoregulatory mechanisms underlying starvation stress in crustaceans remain unclear. MicroRNAs (miRNAs) are a new class of non-coding RNAs that can regulate various biological processes, such as stress and immune responses. In the present work, miRNAs related to starvation stress responses and immune properties were identified and characterised in oriental river prawn Macrobrachium nipponense using high-throughput sequencing and bioinformatics analyses. Twelve small RNA libraries from hepatopancreas tissue were sequenced across four fasting stages lasting 0, 7, 14 or 21 days. In total, 550 miRNAs were identified including 198 putative novel miRNAs and 352 conserved miRNAs belonging to 57 families. Moreover, compared with expression levels at 0 days, 27, 27 and 43 miRNAs were differentially expressed (DE-miRNAs) at 7, 14 and 21 days, respectively. Among these, four DE-miRNAs (ame-miR-190-5p, dme-miR-307a-3p, hme-miR-2788-3p and novel_68) were co-expressed at all three timepoints. Furthermore, 661 target genes regulated by these DE-miRNAs were identified, and associated functional annotations were derived by GO enrichment and KEGG pathway analyses, which showed that most DE-miRNAs were mainly participated in metabolic processes and immune responses. Furthermore, 26 host DE-miRNAs potentially participated in interactions with white spot syndrome virus (WSSV) were identified by predicting and analysing target genes from WSSV. The further WSSV challenge under starvation stress showed that dme-miR-307a-3p played a part in the antiviral responses against WSSV. Our results demonstrate that dme-miR-307a-3p may play vital regulatory roles in responding to starvation stress and WSSV infection. The findings contribute new insight into the molecular mechanisms associated with immune responses to environmental stress in crustaceans.
Collapse
|
10
|
Arzuaga-Mendez J, Lopez-Santillan M, Garcia-Ruiz JC, Lopez-Lopez E, Martin-Guerrero I. Systematic review of the potential of MicroRNAs in the management of patients with follicular lymphoma. Crit Rev Oncol Hematol 2021; 159:103247. [PMID: 33515703 DOI: 10.1016/j.critrevonc.2021.103247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Follicular lymphoma (FL) is the second most common non-Hodgkin lymphoma and usually presents as an indolent disease. However, some patients present poor outcomes, and FL can transform into more aggressive lymphomas, such as Diffuse Large B cell lymphoma (DLBCL). MicroRNAs (miRNA) are small RNA molecules that participate in posttranscriptional regulation of gene expression, that are emerging biomarkers in cancer. In this systematic review, we included studies evaluating miRNA expression in tumor tissue as diagnosis, transformation or prognosis biomarkers in FL. We identified several miRNAs, which could be diagnostic biomarkers in FL: miR-155-5p and miR-9-3p as miRNAs of potential utility for diagnosis of FL, and miR-150 and miR-17-92 cluster for differential diagnosis between FL and DLBCL. Prognosis and transformation prediction have not been studied in enough depth to draw solid conclusions. Further research is needed to exploit the potential of this field.
Collapse
Affiliation(s)
- Javier Arzuaga-Mendez
- Hematology Service. Hematologic Cancer Group, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Osakidetza, Plaza Cruces s/n, Barakaldo, Spain; Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursing and Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Maria Lopez-Santillan
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursing and Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Barrio Sarriena s/n, 48940, Leioa, Spain; Medical Oncology Service, Basurto University Hospital, Avenida de Montevideo, 18, 48013, Bilbao, Spain
| | - Juan Carlos Garcia-Ruiz
- Hematology Service. Hematologic Cancer Group, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Osakidetza, Plaza Cruces s/n, Barakaldo, Spain
| | - Elixabet Lopez-Lopez
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursing and Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Barrio Sarriena s/n, 48940, Leioa, Spain; Pediatric Oncology Group, Biocruces Bizkaia Health Research Institute, Plaza Cruces s/n, 48903 Barakaldo, Spain.
| | - Idoia Martin-Guerrero
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursing and Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Barrio Sarriena s/n, 48940, Leioa, Spain; Pediatric Oncology Group, Biocruces Bizkaia Health Research Institute, Plaza Cruces s/n, 48903 Barakaldo, Spain
| |
Collapse
|
11
|
Gutierrez-Camino A, Richer C, St-Onge P, Lopez-Lopez E, Bañeres AC, de Andoin NG, Sastre A, Astigarraga I, Martin-Guerrero I, Sinnett D, Garcia-Orad A. Role of rs10406069 in miR-5196 in hyperdiploid childhood acute lymphoblastic leukemia. Epigenomics 2020; 12:1949-1955. [PMID: 33245684 DOI: 10.2217/epi-2020-0152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To determine the role of single nucleotide polymorphisms (SNPs) in noncoding RNAs in childhood acute lymphoblastic leukemia (ALL) subtypes. Materials & methods: We screened all SNPs in 130 pre-miRNA genes to assess their role in the susceptibility of the most common subtypes of ALL: hyperdiploid and ETV6-RUNX1. Results: In two independent cohorts, we found a significant association between rs10406069 in miR-5196 and the risk of developing hyperdiploid ALL. This observation could be explained by the impact of the SNP on miR-5196 expression and in turn, in its target genes. Indeed, rs10406069 was associated with expression changes in SMC1A, a gene involved in sister chromatin cohesion. Conclusion: rs10406069 in miR-5196 may have a relevant role in hyperdiploid ALL risk.
Collapse
Affiliation(s)
- Angela Gutierrez-Camino
- Department of Genetics, Physical Anthropology & Animal Physiology, Faculty of Medicine & Nursing, University of the Basque Country, UPV/EHU, Leioa, Spain.,Pediatric Oncology Group, BioCruces Bizkaia Health Research Institute, Barakaldo, Spain.,Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Chantal Richer
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Pascal St-Onge
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Elixabet Lopez-Lopez
- Department of Genetics, Physical Anthropology & Animal Physiology, Faculty of Medicine & Nursing, University of the Basque Country, UPV/EHU, Leioa, Spain.,Pediatric Oncology Group, BioCruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Ana Carbone Bañeres
- Department of Paediatrics, University Hospital Miguel Servet, Zaragoza, Spain
| | - Nagore Garcia de Andoin
- Department of Paediatrics, University Hospital Donostia, San Sebastian, Spain.,Unit of Pediatric Oncohematology, BioDonostia Health Research Institute, San Sebastian, Spain.,Department of Pediatrics, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Ana Sastre
- Department of Oncohematology, University Hospital La Paz, Madrid, Spain
| | - Itziar Astigarraga
- Pediatric Oncology Group, BioCruces Bizkaia Health Research Institute, Barakaldo, Spain.,Department of Pediatrics, University of the Basque Country, UPV/EHU, Leioa, Spain.,Department of Paediatrics, University Hospital Cruces, Barakaldo, Spain
| | - Idoia Martin-Guerrero
- Department of Genetics, Physical Anthropology & Animal Physiology, Faculty of Medicine & Nursing, University of the Basque Country, UPV/EHU, Leioa, Spain.,Pediatric Oncology Group, BioCruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Daniel Sinnett
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada.,Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1C5, Canada
| | - Africa Garcia-Orad
- Department of Genetics, Physical Anthropology & Animal Physiology, Faculty of Medicine & Nursing, University of the Basque Country, UPV/EHU, Leioa, Spain.,Pediatric Oncology Group, BioCruces Bizkaia Health Research Institute, Barakaldo, Spain
| |
Collapse
|
12
|
Gutierrez-Camino A, Garcia-Obregon S, Lopez-Lopez E, Astigarraga I, Garcia-Orad A. miRNA deregulation in childhood acute lymphoblastic leukemia: a systematic review. Epigenomics 2019; 12:69-80. [PMID: 31833405 DOI: 10.2217/epi-2019-0154] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Despite remarkable improvements in survival of childhood acute lymphoblastic leukemia (ALL), nonresponding or relapsing patients still represent one of the most frequent causes of death by disease in children. Accurate patient risk stratification based on genetic markers could increases survival rates. miRNAs can represent novel candidates with diagnostic, predictive and prognostic potential; however, many groups investigated their involvement with contradictory results. Aim: To clarify the role of miRNAs as biomarkers through a systematic review. Results: From a revision of 45 manuscripts, we found that miR-128 and miR-181 overexpression could represent markers for ALL diagnosis and underexpression of miR-708 and miR-99a could be markers for bad prognosis. Conclusion: These signatures could refine classification and risk stratification of patients and improve ALL outcome.
Collapse
Affiliation(s)
- Angela Gutierrez-Camino
- Department of Genetics, Physical Anthropology & Animal Physiology, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain.,BioCruces Bizkaia Health Research Institute, Pediatric Oncology Group, Barakaldo, 48903, Spain.,Division of Hematology-Oncology, Research Center, Sainte-Justine University Health Center, Montreal, QC H3T 1C5, Canada
| | - Susana Garcia-Obregon
- BioCruces Bizkaia Health Research Institute, Pediatric Oncology Group, Barakaldo, 48903, Spain
| | - Elixabet Lopez-Lopez
- Department of Genetics, Physical Anthropology & Animal Physiology, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain.,BioCruces Bizkaia Health Research Institute, Pediatric Oncology Group, Barakaldo, 48903, Spain
| | - Itziar Astigarraga
- BioCruces Bizkaia Health Research Institute, Pediatric Oncology Group, Barakaldo, 48903, Spain.,Department of Pediatrics, University Hospital Cruces, Barakaldo, 48903, Spain.,Department of Pediatrics, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| | - Africa Garcia-Orad
- Department of Genetics, Physical Anthropology & Animal Physiology, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain.,BioCruces Bizkaia Health Research Institute, Pediatric Oncology Group, Barakaldo, 48903, Spain
| |
Collapse
|
13
|
Kang H, Liang QJ, Hu R, Li ZH, Liu Y, Wang WN. Integrative mRNA-miRNA interaction analysis associated with the immune response of Epinephelus coioddes to Vibrio alginolyticus infection. FISH & SHELLFISH IMMUNOLOGY 2019; 90:404-412. [PMID: 31077847 DOI: 10.1016/j.fsi.2019.05.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/29/2019] [Accepted: 05/04/2019] [Indexed: 06/09/2023]
Abstract
MicroRNAs (miRNAs) are a kind of small non-coding RNAs that have been reported to play a vital role in mediating host-pathogen interactions. High-throughput sequencing technology was applied to identify and illuminate mRNAs and miRNAs from grouper infected with Vibrio alginolyticus. The KEGG pathway enrichment analysis showed that the most significate DEGs are associated with Toll-like receptor signaling pathway and NOD-like receptor signaling pathway. We obtained 374 known miRNAs and 116 novel miRNAs. During them, there are 31 up-regulated miRNAs and 93 down-regulated miRNAs. miRNA-mRNA GO and KEGG analysis show that there are 90 miRNAs associated with the immune system. The target genes of immune-related miRNAs (miR-142, miR-146, miR-150, miR-155, miR-203, miR-205, miR-24, miR-31) and genes (CD80, IL-2, AMPK, PI3K) in Epinephelus coioddes were predicted and validated. This study provides an opportunity to further understanding the molecular mechanisms especially the immune system of miRNA regulation in Epinephelus coioddes host-pathogen interactions.
Collapse
Affiliation(s)
- Huan Kang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Qing-Jian Liang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Rui Hu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Zhong-Hua Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Yuan Liu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Wei-Na Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou, 510631, PR China.
| |
Collapse
|
14
|
Herrera-Espejo S, Santos-Zorrozua B, Álvarez-González P, Lopez-Lopez E, Garcia-Orad Á. A Systematic Review of MicroRNA Expression as Biomarker of Late-Onset Alzheimer's Disease. Mol Neurobiol 2019; 56:8376-8391. [PMID: 31240600 DOI: 10.1007/s12035-019-01676-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/09/2019] [Indexed: 12/11/2022]
Abstract
Late-onset Alzheimer's disease (LOAD) is a high-occurrence neurological disorder but the difficulty in identifying precise and early biomarkers has complicated the understanding of the disease and the development of new treatments. In this sense, important knowledge is emerging regarding novel molecular and biological candidates with diagnostic potential, including microRNAs (miRNAs), which have a key role in gene repression. The aim of this systematic review was to define the role of miRNAs' expression as biomarkers for LOAD both in brain tissues, which could help understand the biology of the disease, and circulating tissues, which could serve as non-invasive markers of the pathology. A systematic search was performed in Web of Science and PubMed using the keywords ((Alzheimer or Alzheimer's) and (microRNA or microRNAs or miRNA or miRNAs or miR)) until August 2018 to retrieve all articles that presented independent original data evaluating the impact of miRNA expression on the development of LOAD in human population. A total of 90 studies investigating the role of miRNAs' expression in the development of LOAD were identified. While other widely studied miRNAs such as hsa-miR-146a presented contradictory results among studies, deregulation in brain tissue of seven miRNAs, hsa-miR-16-5p, hsa-miR-34a-5p, hsa-miR-107, hsa-miR-125-5p, hsa-miR-132-3p, hsa-miR-181-3p, and hsa-miR-212-3p, was consistently identified in LOAD patients. Their role in the disease could be mediated through the regulation of key pathways, such as axon guidance, longevity, insulin, and MAPK signaling pathway. However, regarding their role as non-invasive biomarkers of LOAD in fluids, although the limited results available are promising, further studies are required.
Collapse
Affiliation(s)
- Soraya Herrera-Espejo
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursing, University of The Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Borja Santos-Zorrozua
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursing, University of The Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Paula Álvarez-González
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursing, University of The Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Elixabet Lopez-Lopez
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursing, University of The Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain.
- BioCruces Bizkaia Health Research Institute, Barakaldo, Spain.
| | - África Garcia-Orad
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursing, University of The Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain
- BioCruces Bizkaia Health Research Institute, Barakaldo, Spain
| |
Collapse
|
15
|
Prieto-Fernández E, Aransay AM, Royo F, González E, Lozano JJ, Santos-Zorrozua B, Macias-Camara N, González M, Garay RP, Benito J, Garcia-Orad A, Falcón-Pérez JM. A Comprehensive Study of Vesicular and Non-Vesicular miRNAs from a Volume of Cerebrospinal Fluid Compatible with Clinical Practice. Am J Cancer Res 2019; 9:4567-4579. [PMID: 31367240 PMCID: PMC6643433 DOI: 10.7150/thno.31502] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/20/2019] [Indexed: 12/16/2022] Open
Abstract
Cerebrospinal fluid (CSF) microRNAs (miRNAs) have emerged as potential biomarkers for minimally invasive diagnosis of central nervous system malignancies. However, despite significant advances in recent years, this field still suffers from poor data reproducibility. This is especially true in cases of infants, considered a new subject group. Implementing efficient methods to study miRNAs from clinically realistic CSF volumes is necessary for the identification of new biomarkers. Methods: We compared six protocols for characterizing miRNAs, using 200-µL CSF from infants (aged 0-7). Four of the methods employed extracellular vesicle (EV) enrichment step and the other two obtained the miRNAs directly from cleared CSF. The efficiency of each method was assessed using real-time PCR and small RNA sequencing. We also determined the distribution of miRNAs among different CSF shuttles, using size-exclusion chromatography. Results: We identified 281 CSF miRNAs from infants. We demonstrated that the miRNAs could be efficiently detected using only 200 µL of biofluid in case of at least two of the six methods. In the exosomal fraction, we found 12 miRNAs that might be involved in neurodevelopment. Conclusion: The Norgen and Invitrogen protocols appear suitable for the analysis of a large number of miRNAs using small CSF samples.
Collapse
|
16
|
Solé C, Arnaiz E, Lawrie CH. MicroRNAs as Biomarkers of B-cell Lymphoma. Biomark Insights 2018; 13:1177271918806840. [PMID: 30349178 PMCID: PMC6195009 DOI: 10.1177/1177271918806840] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 12/13/2022] Open
Abstract
B-cell lymphomas represent a diverse group of neoplasms classified primarily by histopatholgy and are often challenging to accurately diagnose. Despite having been recognized less than 20 years ago, microRNAs (miRNAs) have emerged as one of the most promising class of cancer molecular biomarkers and are particularly attractive as they can be readily detected in formalin-fixed paraffin-embedded biopsy material and biological fluids such as blood. Many of the identified B-cell lymphoma miRNA biomarkers also play crucial regulatory roles in normal B-cell development. Below we consider the identity, function, and biomarker potential of miRNAs in B-cell lymphoma and most importantly the barriers that remain to be overcome if they are really to become part of routine clinical practice.
Collapse
Affiliation(s)
- Carla Solé
- Molecular Oncology Group, Biodonostia Research Institute, San Sebastián, Spain
| | - Esther Arnaiz
- Molecular Oncology Group, Biodonostia Research Institute, San Sebastián, Spain
| | - Charles H Lawrie
- Molecular Oncology Group, Biodonostia Research Institute, San Sebastián, Spain.,Nuffield Division of Clinical Laboratory Sciences, University of Oxford, Oxford, UK.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
17
|
Gutierrez-Camino A, Martin-Guerrero I, Dolzan V, Jazbec J, Carbone-Bañeres A, Garcia de Andoin N, Sastre A, Astigarraga I, Navajas A, Garcia-Orad A. Involvement of SNPs in miR-3117 and miR-3689d2 in childhood acute lymphoblastic leukemia risk. Oncotarget 2018; 9:22907-22914. [PMID: 29796161 PMCID: PMC5955428 DOI: 10.18632/oncotarget.25144] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 04/02/2018] [Indexed: 12/24/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common cancer in children. Numerous studies have shown that microRNAs (miRNAs) could play a role in this disease. Nowadays, more than 2500 miRNAs have been described, that regulate more than 50% of genes, including those involved in B-cell maturation, differentiation and proliferation. Genetic variants in miRNAs can alter their own levels or function, affecting their target gene expression, and then, may affect ALL risk. Therefore, the aim of this study was to determine the role of miRNA genetic variants in B-ALL susceptibility. We analyzed all variants in pre-miRNAs (MAF > 1%) in two independent cohorts from Spain and Slovenia and inferred their functional effect by in silico analysis. SNPs rs12402181 in miR-3117 and rs62571442 in miR-3689d2 were associated with ALL risk in both cohorts, possibly through their effect on MAPK signalling pathway. These SNPs could be novel markers for ALL susceptibility.
Collapse
Affiliation(s)
- Angela Gutierrez-Camino
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Idoia Martin-Guerrero
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Vita Dolzan
- Institute of Biochemistry, Faculty of Medicine, Ljubljana, Slovenia
| | - Janez Jazbec
- Department of Oncology and Haematology, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Ana Carbone-Bañeres
- Department of Paediatrics, University Hospital Miguel Servet, Zaragoza, Spain
| | - Nagore Garcia de Andoin
- Department of Paediatrics, University Hospital Donostia, San Sebastian, Spain.,BioDonostia Health Research Institute, San Sebastian, Spain
| | - Ana Sastre
- Department of Oncohematology, University Hospital La Paz, Madrid, Spain
| | - Itziar Astigarraga
- Department of Paediatrics, University Hospital Cruces, Barakaldo, Spain.,BioCruces Health Research Institute, Barakaldo, Spain
| | | | - Africa Garcia-Orad
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, UPV/EHU, Leioa, Spain.,BioCruces Health Research Institute, Barakaldo, Spain
| |
Collapse
|
18
|
Natural Compounds as Epigenetic Regulators of Human Dendritic Cell-mediated Immune Function. J Immunother 2018; 41:169-180. [DOI: 10.1097/cji.0000000000000201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Ultimo S, Martelli AM, Zauli G, Vitale M, Calin GA, Neri LM. Roles and clinical implications of microRNAs in acute lymphoblastic leukemia. J Cell Physiol 2018; 233:5642-5654. [DOI: 10.1002/jcp.26290] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/14/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Simona Ultimo
- Department of Morphology, Surgery and Experimental MedicineUniversity of FerraraFerraraItaly
| | - Alberto M. Martelli
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBolognaItaly
| | - Giorgio Zauli
- Department of Morphology, Surgery and Experimental MedicineUniversity of FerraraFerraraItaly
| | - Marco Vitale
- Department of Medicine and Surgery, Sport and Exercise Medicine Centre (SEM)University of ParmaParmaItaly
- CoreLabHospital‐University of ParmaParmaItaly
| | - George A. Calin
- Departments of Experimental Therapeutics and LeukemiaThe University of Texas MD Anderson Cancer CenterHoustonTexas
- Center for RNA Interference and Non‐Coding RNAsThe University of Texas MD Anderson Cancer CenterHoustonTexas
| | - Luca M. Neri
- Department of Morphology, Surgery and Experimental MedicineUniversity of FerraraFerraraItaly
| |
Collapse
|
20
|
Bortolomeazzi M, Gaffo E, Bortoluzzi S. A survey of software tools for microRNA discovery and characterization using RNA-seq. Brief Bioinform 2017; 20:918-930. [DOI: 10.1093/bib/bbx148] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/12/2017] [Indexed: 01/08/2023] Open
Affiliation(s)
| | - Enrico Gaffo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | |
Collapse
|
21
|
Solé C, Larrea E, Di Pinto G, Tellaetxe M, Lawrie CH. miRNAs in B-cell lymphoma: Molecular mechanisms and biomarker potential. Cancer Lett 2017; 405:79-89. [DOI: 10.1016/j.canlet.2017.07.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/06/2017] [Accepted: 07/14/2017] [Indexed: 12/16/2022]
|
22
|
Brandl A, Daum P, Brenner S, Schulz SR, Yap DYH, Bösl MR, Wittmann J, Schuh W, Jäck HM. The microprocessor component, DGCR8, is essential for early B-cell development in mice. Eur J Immunol 2016; 46:2710-2718. [PMID: 27641147 DOI: 10.1002/eji.201646348] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 08/20/2016] [Accepted: 09/14/2016] [Indexed: 01/09/2023]
Abstract
microRNAs (miRNAs) are important posttranscriptional regulators during hematopoietic lineage commitment and lymphocyte development. Mature miRNAs are processed from primary miRNA transcripts in two steps by the microprocessor complex, consisting of Drosha and its partner DiGeorge Critical Region 8 (DGCR8), and the RNAse III enzyme, Dicer. Conditional ablations of Drosha and Dicer have established the importance of both RNAses in B- and T-cell development. Here, we show that a cre-mediated B-cell specific deletion of DGCR8 in mice results in a nearly complete maturation block at the transition from the pro-B to the pre-B cell stage, and a failure to upregulate Ig μ heavy chain expression in pro-B cells. Furthermore, we found that the death of freshly isolated DGCR8-deficient pro-B cells could be partially prevented by enforced Bcl2 expression. We conclude from these findings that the microprocessor component DGCR8 is essential for survival and differentiation of early B-cell progenitors.
Collapse
Affiliation(s)
- Andreas Brandl
- Division of Molecular Immunology, Internal Medicine III, Nikolaus-Fiebiger-Center of Molecular Medicine, University Hospital Erlangen, Erlangen, Germany
| | - Patrick Daum
- Division of Molecular Immunology, Internal Medicine III, Nikolaus-Fiebiger-Center of Molecular Medicine, University Hospital Erlangen, Erlangen, Germany
| | - Sven Brenner
- Department of Genetics, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Sebastian R Schulz
- Division of Molecular Immunology, Internal Medicine III, Nikolaus-Fiebiger-Center of Molecular Medicine, University Hospital Erlangen, Erlangen, Germany
| | - Desmond Yat-Hin Yap
- Division of Molecular Immunology, Internal Medicine III, Nikolaus-Fiebiger-Center of Molecular Medicine, University Hospital Erlangen, Erlangen, Germany
| | - Michael R Bösl
- Institute of Experimental Biomedicine, University Hospital of Würzburg, Würzburg, Germany
| | - Jürgen Wittmann
- Division of Molecular Immunology, Internal Medicine III, Nikolaus-Fiebiger-Center of Molecular Medicine, University Hospital Erlangen, Erlangen, Germany
| | - Wolfgang Schuh
- Division of Molecular Immunology, Internal Medicine III, Nikolaus-Fiebiger-Center of Molecular Medicine, University Hospital Erlangen, Erlangen, Germany
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Internal Medicine III, Nikolaus-Fiebiger-Center of Molecular Medicine, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
23
|
Wang B, Gan Z, Cai S, Wang Z, Yu D, Lin Z, Lu Y, Wu Z, Jian J. Comprehensive identification and profiling of Nile tilapia (Oreochromis niloticus) microRNAs response to Streptococcus agalactiae infection through high-throughput sequencing. FISH & SHELLFISH IMMUNOLOGY 2016; 54:93-106. [PMID: 27050313 DOI: 10.1016/j.fsi.2016.03.159] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 03/22/2016] [Accepted: 03/26/2016] [Indexed: 06/05/2023]
Abstract
MicroRNAs are a kind of small non-coding RNAs that participate in various biological processes. Deregulated microRNA expression is associated with several types of diseases. Tilapia (Oreochromis niloticus) is an important commercial fish species in China. To identify miRNAs and investigate immune-related miRNAs of O. niloticus, we applied high-throughput sequencing technology to identify and analyze miRNAs from tilapia infected with Streptococcus agalactiae at a timescale of 72 h divided into six different time points. The results showed that a total of 3009 tilapia miRNAs were identified, including in 1121 miRNAs which have homologues in the currently available databases and 1878 novel miRNAs. The expression levels of 218 tilapia miRNAs were significantly altered at 6 h-72 h post-bacterial infection (pi), and these miRNAs were therefore classified as differentially expressed tilapia miRNAs. For the 1121 differentially expressed tilapia miRNAs target 41961 genes. GO and KEGG enrichment analysis revealed that some target genes of tilapia miRNAs were grouped mainly into the categories of apoptotic process, signal pathway, and immune response. This is the first report of comprehensive identification of O. niloticus miRNAs being differentially regulated in spleen in normal conditions relating to S. agalactiae infection. This work provides an opportunity for further understanding of the molecular mechanisms of miRNA regulation in O. niloticus host-pathogen interactions.
Collapse
Affiliation(s)
- Bei Wang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animala, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Insititutes, Zhanjiang, 524025, China
| | - Zhen Gan
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animala, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Insititutes, Zhanjiang, 524025, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Shuanghu Cai
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animala, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Insititutes, Zhanjiang, 524025, China
| | - Zhongliang Wang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animala, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Insititutes, Zhanjiang, 524025, China
| | - Dapeng Yu
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animala, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Insititutes, Zhanjiang, 524025, China
| | - Ziwei Lin
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animala, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Insititutes, Zhanjiang, 524025, China
| | - Yishan Lu
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animala, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Insititutes, Zhanjiang, 524025, China
| | - Zaohe Wu
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animala, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Insititutes, Zhanjiang, 524025, China
| | - Jichang Jian
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animala, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Insititutes, Zhanjiang, 524025, China.
| |
Collapse
|
24
|
Han SM, Na HY, Ham O, Choi W, Sohn M, Ryu SH, In H, Hwang KC, Park CG. TCF4-Targeting miR-124 is Differentially Expressed amongst Dendritic Cell Subsets. Immune Netw 2016; 16:61-74. [PMID: 26937233 PMCID: PMC4770101 DOI: 10.4110/in.2016.16.1.61] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/08/2016] [Accepted: 01/15/2016] [Indexed: 12/23/2022] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells that sample their environment and present antigens to naïve T lymphocytes for the subsequent antigen-specific immune responses. DCs exist in a range of distinct subpopulations including plasmacytoid DCs (pDCs) and classical DCs (cDCs), with the latter consisting of the cDC1 and cDC2 lineages. Although the roles of DC-specific transcription factors across the DC subsets have become understood, the posttranscriptional mechanisms that regulate DC development are yet to be elucidated. MicroRNAs (miRNAs) are pivotal posttranscriptional regulators of gene expression in a myriad of biological processes, but their contribution to the immune system is just beginning to surface. In this study, our in-house probe collection was screened to identify miRNAs possibly involved in DC development and function by targeting the transcripts of relevant mouse transcription factors. Examination of DC subsets from the culture of mouse bone marrow with Flt3 ligand identified high expression of miR-124 which was able to target the transcript of TCF4, a transcription factor critical for the development and homeostasis of pDCs. Further expression profiling of mouse DC subsets isolated from in vitro culture as well as via ex vivo purification demonstrated that miR-124 was outstandingly expressed in CD24+ cDC1 cells compared to in pDCs and CD172α+ cDC2 cells. These results imply that miR-124 is likely involved in the processes of DC subset development by posttranscriptional regulation of a transcription factor(s).
Collapse
Affiliation(s)
- Sun Murray Han
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea.; Brain Korea 21 PLUS Project for Medical Science, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Hye Young Na
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Onju Ham
- Brain Korea 21 PLUS Project for Medical Science, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea.; Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung 25601, Korea
| | - Wanho Choi
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea.; Brain Korea 21 PLUS Project for Medical Science, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Moah Sohn
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea.; Brain Korea 21 PLUS Project for Medical Science, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Seul Hye Ryu
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea.; Brain Korea 21 PLUS Project for Medical Science, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Hyunju In
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea.; Brain Korea 21 PLUS Project for Medical Science, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Ki-Chul Hwang
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung 25601, Korea
| | - Chae Gyu Park
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea.; Brain Korea 21 PLUS Project for Medical Science, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
25
|
Luan C, Yang Z, Chen B. The functional role of microRNA in acute lymphoblastic leukemia: relevance for diagnosis, differential diagnosis, prognosis, and therapy. Onco Targets Ther 2015; 8:2903-14. [PMID: 26508875 PMCID: PMC4610789 DOI: 10.2147/ott.s92470] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs), a new class of noncoding RNAs, which can hybridize to target messenger RNAs and regulate their expression posttranscriptionally, express differentially in distinct stages of lymphopoiesis and influence the direction of lymphoid precursor maturation. Hence, there is aberrant expression of miRNAs involved in malignant lymphopoiesis, and these aberrations can be used as signatures of acute lymphoblastic leukemia (ALL) with different subtypes. In addition, changes in the expression of several miRNAs may have functional relevance with leukemogenesis or drug resistance. As a result, the reversal of the expression of these miRNAs may alleviate the disease to some extent and improve clinical outcomes. However, among the studies of miRNAs, there are still some problems that need to be solved to understand the function of miRNAs in ALL more thoroughly.
Collapse
Affiliation(s)
- Chengxin Luan
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Zixue Yang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, People's Republic of China
| | - Baoan Chen
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
26
|
Nagalakshmi VK, Lindner V, Wessels A, Yu J. microRNA-dependent temporal gene expression in the ureteric bud epithelium during mammalian kidney development. Dev Dyn 2014; 244:444-56. [PMID: 25369991 DOI: 10.1002/dvdy.24221] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 10/21/2014] [Accepted: 10/21/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Our previous study on mouse mutants with the ureteric bud (UB) epithelium-specific Dicer deletion (Dicer UB mutants) demonstrated the significance of UB epithelium-derived miRNAs in UB development. RESULTS Our whole-genome transcriptional profiling showed that the Dicer mutant UB epithelium abnormally retained transcriptional features of the early UB epithelium and failed to express many genes associated with collecting duct differentiation. Furthermore, we identified a temporal expression pattern of early UB genes during UB epithelium development in which gene expression was detected at early developmental stages and became undetectable by embryonic day 14.5. In contrast, expression of early UB genes persisted at later stages in the Dicer mutant UB epithelium and increased at early stages. Our bioinformatic analysis of the abnormally persistently expressed early genes in the Dicer mutant UB epithelium showed significant enrichment of the let-7 family miRNA targets. We further identified a temporal expression pattern of let-7 miRNAs in the UB epithelium that is anti-parallel to that of some early UB genes during kidney development. CONCLUSIONS We propose a model in which the let-7 family miRNAs silence the expression of a subset of early genes in the UB epithelium at later developmental stages to promote collecting duct differentiation. Developmental Dynamics 244:444-456, 2015. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vidya K Nagalakshmi
- Department of Cell Biology and Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | | | | | | |
Collapse
|
27
|
Zhao J, Li Y, Hu Y, Chen C, Zhou Y, Tao Y, Guo M, Qin N, Xu L. MicroRNAs expression profile in CCR6(+) regulatory T cells. PeerJ 2014; 2:e575. [PMID: 25279261 PMCID: PMC4179613 DOI: 10.7717/peerj.575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 08/22/2014] [Indexed: 12/13/2022] Open
Abstract
Backgroud. CCR6+ CD4+ regulatory T cells (CCR6+ Tregs), a distinct Tregs subset, played an important role in various immune diseases. Recent evidence showed that microRNAs (miRNAs) are vital regulators in the function of immune cells. However, the potential role of miRNAs in the function of CCR6+ Tregs remains largely unknown. In this study, we detected the expression profile of miRNAs in CCR6+ Tregs. Materials and Methods. The expression profile of miRNAs as well as genes in CCR6+ Tregs or CCR6- Tregs from Balb/c mice were detected by microarray. The signaling pathways were analyzed using the Keggs pathway library. Results. We found that there were 58 miRNAs significantly upregulated and 62 downregulated up to 2 fold in CCR6+ Tregs compared with CCR6- Tregs. Moreover, 1,391 genes were observed with 3 fold change and 20 signaling pathways were enriched using the Keggs pathway library. Conclusion. The present data showed CCR6+ Tregs expressed specific miRNAs pattern, which provides insight into the role of miRNAs in the biological function of distinct Tregs subsets.
Collapse
Affiliation(s)
- Juanjuan Zhao
- Department of Immunology, Zunyi Medical College, Guizhou, China
| | - Yongju Li
- Department of Immunology, Zunyi Medical College, Guizhou, China
| | - Yan Hu
- Department of Immunology, Zunyi Medical College, Guizhou, China
| | - Chao Chen
- Department of Immunology, Zunyi Medical College, Guizhou, China
| | - Ya Zhou
- Department of Medical Physics, Zunyi Medical College, Guizhou, China
| | - Yijin Tao
- Department of Immunology, Zunyi Medical College, Guizhou, China
| | - Mengmeng Guo
- Department of Immunology, Zunyi Medical College, Guizhou, China
| | - Nalin Qin
- Department of Immunology, Zunyi Medical College, Guizhou, China
| | - Lin Xu
- Department of Immunology, Zunyi Medical College, Guizhou, China
| |
Collapse
|
28
|
Yokota T. Guest editorial: molecular mechanisms of lymphocyte development: recent findings. Int J Hematol 2014; 100:218-9. [PMID: 25092481 DOI: 10.1007/s12185-014-1645-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 07/15/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Takafumi Yokota
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan,
| |
Collapse
|