1
|
Zhong S, Wang Z, Yang J, Jiang D, Wang K. Ferroptosis-related oxaliplatin resistance in multiple cancers: Potential roles and therapeutic Implications. Heliyon 2024; 10:e37613. [PMID: 39309838 PMCID: PMC11414570 DOI: 10.1016/j.heliyon.2024.e37613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
Oxaliplatin (OXA)-based therapy is effective in the treatment of multiple cancers. However, primary or acquired OXA resistance remains an emerging challenge for its clinical application. Ferroptosis is an iron-dependent mode of cell death that has been demonstrated to play an essential role in the chemoresistance of many drugs, including OXA. In particular, dysregulation of SLC7A11-GPX4, one of the major antioxidant systems of ferroptosis, was found in the OXA resistance of colorectal cancer (CRC) and hepatocellular carcinoma (HCC). In addition, Nrf2, the upstream regulator of GPX4 and many other antioxidant factors, is also involved in the OXA resistance of CRC and HCC. Inhibition of SLC7A11-GPX4 or Nrf2 by genetic deletion of pharmaceutical inhibition could significantly reverse OXA resistance. Long noncoding RNA (lncRNA) also participates in chemoresistance and ferroptosis of cancer cells. Specifically, LINC01134 promotes the recruitment of Nrf2 to the promoter of GPX4, thereby exerting transcriptional regulation of GPX4, which eventually increases the OXA sensitivity of HCC through upregulation of ferroptosis. On the other hand, a novel lncRNA DACT3-AS1 sensitizes gastric cancer cells to OXA through miR-181a-5p/sirtuin 1(SIRT1)-mediated ferroptosis. Therapies based on ferroptosis or a combination of OXA and ferroptosis enhancers could provide new therapeutic insights to overcome OXA resistance. In the present review, we present the current understanding of ferroptosis-related OXA resistance, highlight ferroptosis pathogenesis in OXA chemoresistance, and summarize available therapies that target OXA resistance by enhancing ferroptosis.
Collapse
Affiliation(s)
- Sijia Zhong
- Department of Gastrointestinal Surgery, the First Hospital of China Medical University, Shenyang, 110001, Liaoning Province, China
| | - Zihan Wang
- Department of Oral Implantology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, 110122, China
| | - Jiaxi Yang
- Department of Gastrointestinal Surgery, the First Hospital of China Medical University, Shenyang, 110001, Liaoning Province, China
| | - Di Jiang
- China University of Petroleum (East China), 66 Changjiang West Road, Qingdao, 266580, China
| | - Kewei Wang
- Department of Gastrointestinal Surgery, the First Hospital of China Medical University, Shenyang, 110001, Liaoning Province, China
| |
Collapse
|
2
|
Nishino M, Imaizumi H, Yokoyama Y, Katahira J, Kimura H, Matsuura N, Matsumura M. Histone methyltransferase SUV39H1 regulates the Golgi complex via the nuclear envelope-spanning LINC complex. PLoS One 2023; 18:e0283490. [PMID: 37437070 DOI: 10.1371/journal.pone.0283490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/27/2023] [Indexed: 07/14/2023] Open
Abstract
Cell motility is related to the higher-order structure of chromatin. Stimuli that induce cell migration change chromatin organization; such stimuli include elevated histone H3 lysine 9 trimethylation (H3K9me3). We previously showed that depletion of histone H3 lysine 9 methyltransferase, SUV39H1, suppresses directional cell migration. However, the molecular mechanism underlying this association between chromatin and cell migration remains elusive. The Golgi apparatus is a cell organelle essential for cell motility. In this study, we show that loss of H3K9 methyltransferase SUV39H1 but not SETDB1 or SETDB2 causes dispersion of the Golgi apparatus throughout the cytoplasm. The Golgi dispersion triggered by SUV39H1 depletion is independent of transcription, centrosomes, and microtubule organization, but is suppressed by depletion of any of the following three proteins: LINC complex components SUN2, nesprin-2, or microtubule plus-end-directed kinesin-like protein KIF20A. In addition, SUN2 is closely localized to H3K9me3, and SUV39H1 affects the mobility of SUN2 in the nuclear envelope. Further, inhibition of cell motility caused by SUV39H1 depletion is restored by suppression of SUN2, nesprin-2, or KIF20A. In summary, these results show the functional association between chromatin organization and cell motility via the Golgi organization regulated by the LINC complex.
Collapse
Affiliation(s)
- Miyu Nishino
- Graduate School of Health Sciences, Ehime Prefectural University of Health Sciences, Ehime, Japan
| | - Hiromasa Imaizumi
- Graduate School of Medicine and Health Science, Osaka University, Osaka, Japan
- Department of Radiological Technology, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, Okayama, Japan
| | - Yuhki Yokoyama
- Graduate School of Medicine and Health Science, Osaka University, Osaka, Japan
| | - Jun Katahira
- Laboratories of Cellular Molecular Biology, Graduate School of Veterinary Sciences, Osaka Metropolitan University, Osaka, Japan
| | - Hiroshi Kimura
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Nariaki Matsuura
- Graduate School of Medicine and Health Science, Osaka University, Osaka, Japan
- Osaka International Cancer Institute, Osaka, Japan
| | - Miki Matsumura
- Graduate School of Health Sciences, Ehime Prefectural University of Health Sciences, Ehime, Japan
- Graduate School of Medicine and Health Science, Osaka University, Osaka, Japan
| |
Collapse
|
3
|
Jin Z, Peng F, Zhang C, Tao S, Xu D, Zhu Z. Expression, regulating mechanism and therapeutic target of KIF20A in multiple cancer. Heliyon 2023; 9:e13195. [PMID: 36798768 PMCID: PMC9925975 DOI: 10.1016/j.heliyon.2023.e13195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Kinesin family member 20A (KIF20A) is a member of the kinesin family. It transports chromosomes during mitosis, plays a key role in cell division. Recently, studies proved that KIF20A was highly expressed in cancer. High expression of KIF20A was correlated with poor overall survival (OS). In this review, we summarized all the cancer that highly expressed KIF20A, described the role of KIF20A in cancer. We also organized phase I and phase II clinical trials of KIF20A peptides vaccine. All results indicated that KIF20A was a promising therapeutic target for multiple cancer.
Collapse
Key Words
- ATP, adenosine triphosphate
- BTC, biliary tract cancer
- CPC, chromosomal passenger complex
- CTL, cytotoxic T lymphocyte
- Cancer
- Cdk1, cyclin-dependent kinase 1
- DLG5, discs large MAGUK scaffold protein 5
- EMT, epithelial-mesenchymal transition
- Expression
- FoxM1, forkhead box protein M1
- GC, gastric cancer
- GEM, gemcitabine
- Gli2, glioma-associated oncogene 2
- HLA, human leukocyte antigen
- HNMT, head-and-neck malignant tumor
- IRF, interferon regulatory factor
- JAK, Janus kinase
- KIF20A
- KIF20A, kinesin family member 20A
- LP, long peptide
- MHC I, major histocompatibility complex I
- MKlp2, mitotic kinesin-like protein 2
- Mad2, mitotic arrest deficient 2
- OS, overall survival
- PBMC, peripheral blood mononuclear cell
- Plk1, polo-like kinase 1
- Regulating mechanisms
- Therapeutic target
- circRNA, circular RNA
- miRNA, microRNA
Collapse
Affiliation(s)
- Zheng Jin
- Department of Respirology & Allergy, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, China
| | - Fei Peng
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Baylor College of Medicine, Houston, Texas, USA
| | - Chao Zhang
- Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Shuang Tao
- Department of Otorhinolaryngology Head and Neck Surgery, Longgang Central Hospital of Shenzhen, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Damo Xu
- Department of Respirology & Allergy, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, China,State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong Province, China,Corresponding author. Department of Respirology & Allergy, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, China.
| | - Zhenhua Zhu
- Department of Orthopaedic Trauma, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China,Corresponding author. Department of Orthopaedic Trauma, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
4
|
Jin Z, Tao S, Zhang C, Xu D, Zhu Z. KIF20A promotes the development of fibrosarcoma via PI3K-Akt signaling pathway. Exp Cell Res 2022; 420:113322. [PMID: 36037925 DOI: 10.1016/j.yexcr.2022.113322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/28/2022] [Accepted: 08/16/2022] [Indexed: 11/04/2022]
Abstract
Adult fibrosarcoma is an aggressive subtype of soft tissue sarcoma (STS), in which high expression of KIF20A indicates a poor prognosis. However, the precise role of KIF20A in fibrosarcoma progression remains unknown. In this study, we initially examined KIF20A expression and function in the human fibrosarcoma cell line HT-1080. The results showed that KIF20A was highly expressed in HT-1080, knockdown of KIF20A impaired cell proliferation, migration, invasion and induced G2/M arrest and cell apoptosis. Transcriptome study suggested that PI3K-Akt signal pathway was involved in these biological changes. We confirmed that PI3K-Akt and NF-κB signaling pathways were impaired after the down-regulation of KIF20A, which can be reversed by the Akt activator SC79 in HT-1080 in vitro. In a xenograft mouse model, knockdown of KIF20A inhibited tumor growth, Ki67 expression and liver metastasis. Taken together, our results suggested that KIF20A promoted fibrosarcoma progression via PI3K-Akt signaling pathway and might be a potential therapeutic target for fibrosarcoma.
Collapse
Affiliation(s)
- Zheng Jin
- Department of Respirology & Allergy, The Third Affiliated Hospital of Shenzhen University. Shenzhen, Guangdong Province, China
| | - Shuang Tao
- Department of Otorhinolaryngology Head and Neck Surgery, Longgang Central Hospital of Shenzhen, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Chao Zhang
- Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Damo Xu
- Department of Respirology & Allergy, The Third Affiliated Hospital of Shenzhen University. Shenzhen, Guangdong Province, China; State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong Province, China.
| | - Zhenhua Zhu
- Department of Orthopaedic Trauma, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
5
|
Liang B, Zhou Y, Jiao J, Xu L, Yan Y, Wu Q, Tong X, Yan H. Integrated Analysis of Transcriptome Data Revealed AURKA and KIF20A as Critical Genes in Medulloblastoma Progression. Front Oncol 2022; 12:875521. [PMID: 35574421 PMCID: PMC9092218 DOI: 10.3389/fonc.2022.875521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/29/2022] [Indexed: 12/03/2022] Open
Abstract
Medulloblastoma is the neuroepithelial tumor with the highest degree of malignancy in the central nervous system, accounting for about 8% to 10% of children’s brain tumors. It has a high degree of malignancy and is easily transmitted through cerebrospinal fluid, with a relatively poor prognosis. Although medulloblastoma has been widely studied and treated, its molecular mechanism remains unclear. To determine which gene plays a crucial role in medulloblastoma development and progression, we analyzed three microarray datasets from Gene Expression Omnibus. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes were used to detect and evaluate differentially expressed genes. Protein interaction network was established, and the hub genes were determined in cytoHubba through various assessment methods, while the target genes were screened out using survival analysis. Ultimately, human medulloblastoma samples were utilized to confirm target gene expression. In conclusion, This study found that aurora kinase A (AURKA) and kinesin family member 20A (KIF20A) may be involved in the initiation and development of medulloblastoma, have a close association with prognosis, and may become a potential therapeutic target and prognostic marker of MED.
Collapse
Affiliation(s)
- Bo Liang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China.,Department of Neurosurgery, The Fifith Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Zhou
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Jiji Jiao
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Lixia Xu
- Tianjin Neurosurgical Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China
| | - Yan Yan
- Clinical Laboratory, Tianjin Huanhu Hospital, Tianjin, China
| | - Qiaoli Wu
- Tianjin Neurosurgical Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China
| | - Xiaoguang Tong
- Tianjin Neurosurgical Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China.,Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
| | - Hua Yan
- Tianjin Neurosurgical Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China.,Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
| |
Collapse
|
6
|
Meng Z, Wu J, Liu X, Zhou W, Ni M, Liu S, Guo S, Jia S, Zhang J. Identification of potential hub genes associated with the pathogenesis and prognosis of hepatocellular carcinoma via integrated bioinformatics analysis. J Int Med Res 2021; 48:300060520910019. [PMID: 32722976 PMCID: PMC7391448 DOI: 10.1177/0300060520910019] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Objective The objective was to identify potential hub genes associated with the pathogenesis and prognosis of hepatocellular carcinoma (HCC). Methods Gene expression profile datasets were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) between HCC and normal samples were identified via an integrated analysis. A protein–protein interaction network was constructed and analyzed using the STRING database and Cytoscape software, and enrichment analyses were carried out through DAVID. Gene Expression Profiling Interactive Analysis and Kaplan–Meier plotter were used to determine expression and prognostic values of hub genes. Results We identified 11 hub genes (CDK1, CCNB2, CDC20, CCNB1, TOP2A, CCNA2, MELK, PBK, TPX2, KIF20A, and AURKA) that might be closely related to the pathogenesis and prognosis of HCC. Enrichment analyses indicated that the DEGs were significantly enriched in metabolism-associated pathways, and hub genes and module 1 were highly associated with cell cycle pathway. Conclusions In this study, we identified key genes of HCC, which indicated directions for further research into diagnostic and prognostic biomarkers that could facilitate targeted molecular therapy for HCC.
Collapse
Affiliation(s)
- Ziqi Meng
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jiarui Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xinkui Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Zhou
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Mengwei Ni
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shuyu Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Siyu Guo
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shanshan Jia
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jingyuan Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
7
|
The SUN2-nesprin-2 LINC complex and KIF20A function in the Golgi dispersal. Sci Rep 2021; 11:5358. [PMID: 33686165 PMCID: PMC7940470 DOI: 10.1038/s41598-021-84750-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 02/12/2021] [Indexed: 01/31/2023] Open
Abstract
The morphology of the Golgi complex is influenced by the cellular context, which strictly correlates with nuclear functions; however, the mechanism underlying this association remains elusive. The inner nuclear membrane SUN proteins, SUN1 and SUN2, have diverse functions together with the outer nuclear membrane nesprin proteins, which comprise the LINC complex. We found that depletion of SUN1 leads to Golgi complex dispersion with maintenance of ministacks and retained function for vesicle transport through the Golgi complex. In addition, SUN2 associates with microtubule plus-end-directed motor KIF20A, possibly via nesprin-2. KIF20A plays a role in the Golgi dispersion in conjunction with the SUN2-nesprin-2 LINC complex in SUN1-depleted cells, suggesting that SUN1 suppresses the function of the SUN2-nesprin-2 LINC complex under a steady-state condition. Further, SUN1-knockout mice, which show impaired cerebellar development and cerebellar ataxia, presented altered Golgi morphology in Purkinje cells. These findings revealed a regulation of the Golgi organization by the LINC complex.
Collapse
|
8
|
Ferrero H, Corachán A, Quiñonero A, Bougeret C, Pouletty P, Pellicer A, Domínguez F. Inhibition of KIF20A by BKS0349 reduces endometriotic lesions in a xenograft mouse model. Mol Hum Reprod 2020; 25:562-571. [PMID: 31365745 DOI: 10.1093/molehr/gaz044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/12/2019] [Indexed: 12/11/2022] Open
Abstract
Several studies have suggested a possible etiological association between ovarian endometriosis and ovarian cancer. Evidence has shown that KIF20A overexpression might confer a malignant phenotype to ovarian tumors by promoting proliferation and inhibiting apoptosis. However, no data about the role of KIF20A in endometriosis have been described. In this study, the human endometrium (n = 4) was transfected by mCherry adenovirus and intraperitoneally implanted in mice. Subsequently, mice were divided in three groups (n = 8/group) that were treated with Vehicle, BKS0349 (KIF20A-antagonist) or cabergoline (dopamine receptor agonist) for 21 days. mCherry-labeled endometriotic lesions were monitored over time using the IVIS Imaging System. Mice were sacrificed 72 h after the last administration; proliferation was evaluated by immunohistochemistry and apoptosis by TUNEL. CCND1 gene expression (G1 phase-related gene) was measured by qRT-PCR. A significant reduction in mCherry-fluorescent signal was observed in the BKS0349 group after treatment ended (D24) compared with D0 (P-value = 0.0313). Moreover, the mCherry signal on D24 showed a significant decrease in the BKS0349 group compared with controls (P-value = 0.0303), along with significant size reduction of endometriotic lesions observed in the BKS0349 group compared with control on D24 (P-value = 0.0006). Functional studies showed a significant reduction in proliferating cells in the BKS0349-treated group compared with controls (P-value = 0.0082). In addition, CCND1 expression was decreased in the BKS0349 group compared with control (P-value = 0.049) at D24 and a significant increase in apoptotic cells among endometriotic lesions in BKS0349-treated mice was observed compared with control (P-value = 0.0317). Based on these findings, we concluded that BKS0349 induces apoptosis and inhibits cell proliferation, reducing endometriotic lesion size and suggesting KIF20A inhibition by BKS0349 as a novel therapeutic treatment for endometriosis.
Collapse
Affiliation(s)
- H Ferrero
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto Universitario IVI (IUIVI), Research Department Valencia, Spain.,INCLIVA Biomedical Research Institute, Research Department Valencia, Spain
| | - A Corachán
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto Universitario IVI (IUIVI), Research Department Valencia, Spain.,Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Valencia, Spain
| | - A Quiñonero
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto Universitario IVI (IUIVI), Research Department Valencia, Spain
| | - C Bougeret
- Biokinesis SAS, Research Department. Paris, France
| | - P Pouletty
- Biokinesis SAS, Research Department. Paris, France
| | - A Pellicer
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto Universitario IVI (IUIVI), Research Department Valencia, Spain.,Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Valencia, Spain
| | - F Domínguez
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto Universitario IVI (IUIVI), Research Department Valencia, Spain.,Health Research Institute La Fe. Research Department. Valencia, Spain
| |
Collapse
|
9
|
Xie F, He C, Gao S, Yang Z, Li L, Qiao L, Fang L. KIF20A silence inhibits the migration, invasion and proliferation of non-small cell lung cancer and regulates the JNK pathway. Clin Exp Pharmacol Physiol 2020; 47:135-142. [PMID: 31557334 DOI: 10.1111/1440-1681.13183] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 09/21/2019] [Accepted: 09/23/2019] [Indexed: 12/22/2022]
Abstract
An increasing number of studies have shown that kinesin family member 20A (KIF20A) was overexpressed in several types of cancer, and its overexpression correlated with the oncogenesis and prognosis of cancers. However, little is known about the roles of KIF20A in human non-small cell lung cancer (NSCLC). Thus, the aim of the present study was to demonstrate the expression of KIF20A in human NSCLC and reveal its biological functions and the underlying mechanisms. qRT-PCR, western blot and immunohistochemistry were used to assess the expression of NSCLC patient specimens and NSCLC cell lines. The functions of KIF20A in migration and invasion were determined using Transwell assay. Cell proliferation capacity was performed by CKK-8 assay. We demonstrated that KIF20A was overexpressed in NSCLC specimens compared with the adjacent non-tumorous specimens, and high expression of KIF20A was associated with clinical stage and metastasis in NSCLC. Decreased expression of KIF20A inhibited NSCLC cells migration, invasion and proliferation. Most importantly, further experiments demonstrated that decreased the expression of KLF20A significantly downregulated expression of p-JNK and MMP7, which indicated that knockdown of KIF20A alters lung cancer cell phenotype and regulates JNK pathways. These results suggest that KIF20A may act as a putative oncogene and a potential therapeutic target in NSCLC.
Collapse
Affiliation(s)
- Feng Xie
- China-Japan Union Hospital of Jilin Universtity, Chang chun, China
| | - Chengyan He
- China-Japan Union Hospital of Jilin Universtity, Chang chun, China
| | - Shen Gao
- China-Japan Union Hospital of Jilin Universtity, Chang chun, China
| | - Zhaowei Yang
- China-Japan Union Hospital of Jilin Universtity, Chang chun, China
| | - Lihong Li
- China-Japan Union Hospital of Jilin Universtity, Chang chun, China
| | - Lu Qiao
- China-Japan Union Hospital of Jilin Universtity, Chang chun, China
| | - Ling Fang
- China-Japan Union Hospital of Jilin Universtity, Chang chun, China
| |
Collapse
|
10
|
Kinesin-6 family motor KIF20A regulates central spindle assembly and acrosome biogenesis in mouse spermatogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118636. [PMID: 31884069 DOI: 10.1016/j.bbamcr.2019.118636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/15/2019] [Accepted: 12/23/2019] [Indexed: 11/21/2022]
Abstract
Kinesin-6 KIF20A is essential for microtubule organization and central spindle assembly during cytokinesis. However, the functions of KIF20A in meiotic division and spermatogenesis remain elusive. Here, we report that kinesin-6 KIF20A locates at the microtubules in mouse spermatogenic cells and co-localizes with the spindle midzone and midbody. We demonstrate that central spindle organization and chromosomal stability are regulated by KIF20A in male meiotic division. KIF20A inhibition leads to the defects in central spindle assembly and cytokinetic abscission, and finally results in the increase of aneuploid cells and the alteration of cell populations in the spermatogenic cells. Furthermore, we have revealed that kinesin-6 KIF20A is associated with the formation and maturation of the acrosomes during spermatogenesis. Our findings have identified the specific roles of KIF20A in central spindle organization in meiotic division.
Collapse
|
11
|
Aberrant KIF20A Expression Is Associated with Adverse Clinical Outcome and Promotes Tumor Progression in Prostate Cancer. DISEASE MARKERS 2019; 2019:4782730. [PMID: 31565099 PMCID: PMC6745134 DOI: 10.1155/2019/4782730] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/30/2019] [Indexed: 12/24/2022]
Abstract
Purpose KIF20A is essential in the process of spindle assembly and cytokinesis regulation. The role of KIF20A during tumorigenesis and tumor development has been well studied in several cancers. But the association between the KIF20A clinical role and prostate cancer (PCa) has not been reported yet. In this study, we investigated its potential prognostic effect and its role in progression of prostate cancer. Methods Real-time quantitative polymerase chain reaction and Western blots were used to investigate the KIF20A transcription and translation levels in 7 pairs of fresh PCa tissue and adjacent normal prostate tissue. Immunohistochemistry (IHC) was used to investigate the KIF20A protein level in 114 PCa tissue samples. Bioinformatics analysis was performed to analyze the effect of KIF20A in oncologic prognosis in PCa patients. MTT assay, transwell assay, and colony formation assay in vitro and tumor formation assay in vivo were performed to evaluate the biological behavior of KIF20A in prostate cancer. Results KIF20A was significantly elevated in tumor tissue compared with normal prostate tissue at both the mRNA and the protein level. High expression of KIF20A at the protein level was correlated with adverse clinicopathological features. Bioinformatics analysis showed that the high KIF20A expression group has a poor biochemical recurrence- (BCR-) free survival. Knocking down KIF20A suppressed the proliferation, migration, and invasion of the prostate cancer cell both in vitro and in vivo. Conclusions Our data demonstrated that the high expression of KIF20A was associated with poor clinical outcome and targeting KIF20A could reduce proliferation, migration, and invasion of the prostate cancer cell, indicating that KIF20A might be a potential prognostic and therapeutic target for PCa patients.
Collapse
|
12
|
Ji Z, Pan X, Shang Y, Ni DT, Wu FL. KIF18B as a regulator in microtubule movement accelerates tumor progression and triggers poor outcome in lung adenocarcinoma. Tissue Cell 2019; 61:44-50. [PMID: 31759406 DOI: 10.1016/j.tice.2019.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/01/2019] [Accepted: 09/01/2019] [Indexed: 12/24/2022]
Abstract
KIF18B is involved in several tumor progression and exerts critical effects on microtubule growth during mitosis, but its role in lung adenocarcinoma still remains rare. Hence, we attempted to explore the biological function of KIF18B in lung adenocarcinoma. We first analyzed the expressional pattern of KIF18B in lung adenocarcinoma, and detected the correlation between KIF18B expression and clinical characteristics in lung adenocarcinoma based on The Cancer Genome Atlas (TCGA) database and Oncomine dataset. Subsequently, cell counting kit-8 (CCK-8) assay, wound-healing analysis, and transwell method were performed to assess the effects of KIF18B in lung adenocarcinoma cells. Quantitative real-time reverse transcription-PCR (qRT-PCR) and western blotting were utilized to measure the mRNA and protein expression levels. Our results illustrated that KIF18B expression was significantly up-regulated in lung adenocarcinoma samples compared to normal specimens. High levels of KIF18B were associated with unfavorable prognosis of lung adenocarcinoma patients. Down-regulation of KIF18B in lung adenocarcinoma cells inhibited cell prolifartion, migration, and invasion. Western blot assay demonstrated that KIF18B knockdown markedly decreased Rac1-GTP expression, an important marker of migration and invasion in tumors. Moreover, the phosphorylation of AKT and mTOR expression levels were attenuated after KIF18B knockdown. Taken together, these data enhanced the point that KIF18B might promote lung adenocarcinoma cell proliferation, migration, and invasion by activating Rac1 and mediating the AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Ze Ji
- Department of Respiratory Medicine, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, 215028, PR China
| | - Xing Pan
- Department of Nursing, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, 215028, PR China
| | - Yan Shang
- Department of Respiratory and Critical Care Medicine, Changhai Hospital, Second Military Medical University, Shanghai, 200433, PR China
| | - Dian-Tao Ni
- Department of Respiratory Medicine, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, 215028, PR China.
| | - Feng-Lei Wu
- Department of Oncology, First People Hospital of Lianyungang, Lianyungang, Jiangsu, 222002, PR China.
| |
Collapse
|
13
|
Sakakibara K, Tsujioka T, Kida JI, Kurozumi N, Nakahara T, Suemori SI, Kitanaka A, Arao Y, Tohyama K. Binimetinib, a novel MEK1/2 inhibitor, exerts anti-leukemic effects under inactive status of PI3Kinase/Akt pathway. Int J Hematol 2019; 110:213-227. [PMID: 31129802 DOI: 10.1007/s12185-019-02667-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 12/17/2022]
Abstract
A MEK1/2 inhibitor, binimetinib is promising as a therapeutic agent for malignant melanoma with N-RAS mutation. We examined in vitro effects of binimetinib on 10 human myeloid/lymphoid leukemia cell lines, and found that three of five cell lines with N-RAS mutation and one of five without N-RAS mutation were responsive to treatment with binimetinib. Binimetinib inhibited cell growth mainly by inducing G1 arrest and this action mechanism was assisted by gene set enrichment analysis. To identify signaling pathways associated with binimetinib response, we examined the status of MAP kinase/ERK and PI3Kinase/Akt pathways. The basal levels of phosphorylated ERK and Akt varied between the cell lines, and the amounts of phosphorylated ERK and Akt appeared to be reciprocal of each other. Interestingly, most of the binimetinib-resistant cell lines revealed strong Akt phosphorylation compared with binimetinib-sensitive ones. The effect of binimetinib may not be predicted by the presence/absence of N-RAS mutation, but rather by Akt phosphorylation status. Moreover, combination of binimetinib with a PI3K/Akt inhibitor showed additive growth-suppressive effects. These results suggest that binimetinib shows potential anti-leukemic effects and the basal level of phosphorylated Akt might serve as a biomarker predictive of therapeutic effect.
Collapse
Affiliation(s)
- Kanae Sakakibara
- Division of Medical Technology, Kawasaki University of Medical Welfare, Okayama, 701-0192, Japan.,Field of Medical Technology, Graduate School of Health Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Takayuki Tsujioka
- Department of Laboratory Medicine, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Jun-Ichiro Kida
- Department of Laboratory Medicine, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Nami Kurozumi
- Division of Medical Technology, Kawasaki University of Medical Welfare, Okayama, 701-0192, Japan.,Field of Medical Technology, Graduate School of Health Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Takako Nakahara
- Division of Medical Technology, Kawasaki University of Medical Welfare, Okayama, 701-0192, Japan
| | - Shin-Ichiro Suemori
- Department of Laboratory Medicine, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Akira Kitanaka
- Division of Medical Technology, Kawasaki University of Medical Welfare, Okayama, 701-0192, Japan.,Department of Laboratory Medicine, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Yujiro Arao
- Field of Medical Technology, Graduate School of Health Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Kaoru Tohyama
- Division of Medical Technology, Kawasaki University of Medical Welfare, Okayama, 701-0192, Japan. .,Department of Laboratory Medicine, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan.
| |
Collapse
|