1
|
Sato K, Komaba W, Oka S, Kazama S, Ishikawa R, Morikawa T, Kitahara M, Kazumoto H, Kaiume H, Ueki T, Hiroshima Y, Sumi M, Kobayashi H. Salvage HLA-haploidentical Peripheral Blood Stem Cell Transplantation Using Post-transplant Cyclophosphamide for Recurrent Hemophagocytic Lymphohistiocytosis-associated Graft Failure after Cord Blood Transplantations: A Case Report. Intern Med 2025:5159-24. [PMID: 40222937 DOI: 10.2169/internalmedicine.5159-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/15/2025] Open
Abstract
We describe a case of immunological rejection occurring twice after cord blood transplantation (CBT) for mixed phenotype blast phase chronic myeloid leukemia that was successfully salvaged by haploidentical peripheral blood stem cell transplantation (haplo-PBSCT) with post-transplant cyclophosphamide (PT-Cy). Pre-engraftment immune reaction (PIR) and subsequent hemophagocytic lymphohistiocytosis (HLH), likely due to HLA mismatch in the graft-versus-host (GVH) direction, lead to poor graft function (PGF) and graft failure (GF). This case highlights the pathophysiology of PIR, HLH, PGF, and GF, collectively termed "post-transplant cytokine syndrome." PT-Cy haplo-PBSCT, with wide donor availability and reduced infection risk leading to HLH via rapid engraftment, may be a suitable salvage option for post-CBT cytokine syndrome-related GF.
Collapse
Affiliation(s)
- Keijiro Sato
- Department of Hematology, Nagano Red Cross Hospital, Japan
| | - Wataru Komaba
- Department of Hematology, Nagano Red Cross Hospital, Japan
| | - Saika Oka
- Department of Hematology, Nagano Red Cross Hospital, Japan
| | | | - Ryuto Ishikawa
- Department of Hematology, Nagano Red Cross Hospital, Japan
| | | | - Mari Kitahara
- Department of Hematology, Nagano Red Cross Hospital, Japan
| | | | - Hiroko Kaiume
- Department of Hematology, Nagano Red Cross Hospital, Japan
| | | | - Yuki Hiroshima
- Department of Hematology, Nagano Red Cross Hospital, Japan
| | - Masahiko Sumi
- Department of Hematology, Nagano Red Cross Hospital, Japan
| | | |
Collapse
|
2
|
He Y, Ma R, Zhang Y, Chen H, Chen Y, Chen Y, Han T, Han W, Wang F, Fu H, Yan C, Lv M, Mo X, Cheng Y, Wang Y, Xu L, Zhang X, Huang X, Sun Y. CD34-selected stem cell boost was an effective treatment for refractory poor hematopoietic reconstitution after haploidentical hematopoietic stem cell transplantation. Cytotherapy 2025:S1465-3249(25)00091-X. [PMID: 40186609 DOI: 10.1016/j.jcyt.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/21/2025] [Accepted: 03/11/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Poor hematopoietic reconstitution (PHR), especially poor graft function (PGF) and prolonged isolated thrombocytopenia (PT), is a life-threatening complication after allo- hematopoietic stem cell transplantation (HSCT). Currently, almost no studies have analyzed CD34+-selected stem cells "boost" (SCB) after haplo-HSCT. Hence, in this study, we focused specifically on refractory PHR after haplo-HSCT. OBJECTIVE To retrospectively evaluate the safety and efficacy of donor- CD34+ SCB for the treatment of refractory PHR after haplo-HSCT. STUDY DESIGN Twenty-seven patients with refractory PHR who received a donor-CD34+ selected SCB at Peking University People's Hospital were retrospectively analyzed. The patients' hematopoietic response, incidence of graft-versus-host disease, and survival after CD34+ cell boost were evaluated. RESULTS Among the 27 patients with refractory PHR who received a CD34+ SCB, five patients (18.5%) were diagnosed with primary PGF, 17 patients (63%) were diagnosed with secondary PGF, and five patients (18.5%) were diagnosed with PT. The median time to PHR diagnosis was 63 days (range: 42-330 days), and the median time to the donor CD34+ boost was 456 days (range: 58-853 days). The median number of infused CD34+ cells was 2.589 × 106/kg (range: 0.738-16.8 × 106/kg). Among the 27 patients, 15 achieved hematologic response (55.56%). Among the responders, the median time of absolute neutrophil count (ANC) response was 15 days (range: 10-158 days), and the median time of erythroid reconstitution was 18 days (range: 7-158 days). The platelet reconstitution time was 22 days (range: 7-171 days). Patients with acute infection during CD34+ SCB were noted to have a worse hematologic response (1/15 vs. 5/12, P = 0.03). The mortality rate significantly differed between patients who achieved complete hematologic response and those who did not (100% vs. 33.3%, respectively; P < 00.001). Infections were the leading cause of death (n = 5/8, 62.5%). CONCLUSION CD34+-selected SCB is a potentially effective treatment for refractory PHR after haploidentical HSCT.
Collapse
Affiliation(s)
- Yun He
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China; National Clinical Research Center for Hematologic Disease, Beijing, China; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China; Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Rui Ma
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China; National Clinical Research Center for Hematologic Disease, Beijing, China; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China; Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Yuanyuan Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China; National Clinical Research Center for Hematologic Disease, Beijing, China; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China; Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Huan Chen
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China; National Clinical Research Center for Hematologic Disease, Beijing, China; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China; Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Yao Chen
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China; National Clinical Research Center for Hematologic Disease, Beijing, China; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China; Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Yuhong Chen
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China; National Clinical Research Center for Hematologic Disease, Beijing, China; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China; Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Tingting Han
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China; National Clinical Research Center for Hematologic Disease, Beijing, China; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China; Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Wei Han
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China; National Clinical Research Center for Hematologic Disease, Beijing, China; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China; Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Fengrong Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China; National Clinical Research Center for Hematologic Disease, Beijing, China; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China; Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Haixia Fu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China; National Clinical Research Center for Hematologic Disease, Beijing, China; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China; Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Chenhua Yan
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China; National Clinical Research Center for Hematologic Disease, Beijing, China; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China; Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Meng Lv
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China; National Clinical Research Center for Hematologic Disease, Beijing, China; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China; Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Xiaodong Mo
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China; National Clinical Research Center for Hematologic Disease, Beijing, China; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China; Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Yifei Cheng
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China; National Clinical Research Center for Hematologic Disease, Beijing, China; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China; Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China; National Clinical Research Center for Hematologic Disease, Beijing, China; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China; Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Lanping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China; National Clinical Research Center for Hematologic Disease, Beijing, China; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China; Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Xiaohui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China; National Clinical Research Center for Hematologic Disease, Beijing, China; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China; Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Xiaojun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China; National Clinical Research Center for Hematologic Disease, Beijing, China; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China; Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Yuqian Sun
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China; National Clinical Research Center for Hematologic Disease, Beijing, China; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China; Collaborative Innovation Center of Hematology, Peking University, Beijing, China.
| |
Collapse
|
3
|
Ma R, Zhu DP, Zhang XH, Xu LP, Wang Y, Mo XD, Lv M, Zhang YY, Cheng YF, Yan CH, Chen YH, Chen Y, Wang JZ, Wang FR, Han TT, Kong J, Wang ZD, Han W, Chen H, Chang YJ, He Y, Xu ZL, Zheng FM, Fu HX, Liu KY, Huang XJ, Sun YQ. Salvage haploidentical transplantation for graft failure after first haploidentical allogeneic stem cell transplantation: an updated experience. Bone Marrow Transplant 2024; 59:991-996. [PMID: 38565964 DOI: 10.1038/s41409-024-02276-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
Graft failure is a fatal complication following allogeneic stem cell transplantation where a second transplantation is usually required for salvage. However, there are no recommended regimens for second transplantations for graft failure, especially in the haploidentical transplant setting. We recently reported encouraging outcomes using a novel method (haploidentical transplantation from a different donor after conditioning with fludarabine and cyclophosphamide). Herein, we report updated outcomes in 30 patients using this method. The median time of the second transplantation was 96.5 (33-215) days after the first transplantation. Except for one patient who died at +19d and before engraftment, neutrophil engraftments were achieved in all patients at 11 (8-24) days, while platelet engraftments were achieved in 22 (75.8%) patients at 17.5 (9-140) days. The 1-year OS and DFS were 60% and 53.3%, and CIR and TRM was 6.7% and 33.3%, respectively. Compared with the historical group, neutrophil engraftment (100% versus 58.5%, p < 0.001) and platelet engraftment (75.8% versus 32.3%, p < 0.001) were better in the novel regimen group, and OS was also improved (60.0% versus 26.4%, p = 0.011). In conclusion, salvage haploidentical transplantation from a different donor using the novel regimen represents a promising option to rescue patients with graft failure after the first haploidentical transplantation.
Collapse
Affiliation(s)
- Rui Ma
- Peking University People's Hospital, Beijing, China
- Peking University Institute of Hematology, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Dan-Ping Zhu
- Peking University People's Hospital, Beijing, China
- Peking University Institute of Hematology, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Beijing, China
- Peking University Institute of Hematology, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Lan-Ping Xu
- Peking University People's Hospital, Beijing, China
- Peking University Institute of Hematology, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Yu Wang
- Peking University People's Hospital, Beijing, China
- Peking University Institute of Hematology, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Xiao-Dong Mo
- Peking University People's Hospital, Beijing, China
- Peking University Institute of Hematology, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Meng Lv
- Peking University People's Hospital, Beijing, China
- Peking University Institute of Hematology, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Yuan-Yuan Zhang
- Peking University People's Hospital, Beijing, China
- Peking University Institute of Hematology, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Yi-Fei Cheng
- Peking University People's Hospital, Beijing, China
- Peking University Institute of Hematology, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Chen-Hua Yan
- Peking University People's Hospital, Beijing, China
- Peking University Institute of Hematology, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Yu-Hong Chen
- Peking University People's Hospital, Beijing, China
- Peking University Institute of Hematology, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Yao Chen
- Peking University People's Hospital, Beijing, China
- Peking University Institute of Hematology, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Jing-Zhi Wang
- Peking University People's Hospital, Beijing, China
- Peking University Institute of Hematology, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Feng-Rong Wang
- Peking University People's Hospital, Beijing, China
- Peking University Institute of Hematology, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Ting-Ting Han
- Peking University People's Hospital, Beijing, China
- Peking University Institute of Hematology, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Jun Kong
- Peking University People's Hospital, Beijing, China
- Peking University Institute of Hematology, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Zhi-Dong Wang
- Peking University People's Hospital, Beijing, China
- Peking University Institute of Hematology, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Wei Han
- Peking University People's Hospital, Beijing, China
- Peking University Institute of Hematology, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Huan Chen
- Peking University People's Hospital, Beijing, China
- Peking University Institute of Hematology, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Ying-Jun Chang
- Peking University People's Hospital, Beijing, China
- Peking University Institute of Hematology, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Yun He
- Peking University People's Hospital, Beijing, China
- Peking University Institute of Hematology, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Zheng-Li Xu
- Peking University People's Hospital, Beijing, China
- Peking University Institute of Hematology, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Feng-Mei Zheng
- Peking University People's Hospital, Beijing, China
- Peking University Institute of Hematology, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Hai-Xia Fu
- Peking University People's Hospital, Beijing, China
- Peking University Institute of Hematology, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Kai-Yan Liu
- Peking University People's Hospital, Beijing, China
- Peking University Institute of Hematology, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Beijing, China
- Peking University Institute of Hematology, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Yu-Qian Sun
- Peking University People's Hospital, Beijing, China.
- Peking University Institute of Hematology, Beijing, China.
- National Clinical Research Center for Hematologic Disease, Beijing, China.
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China.
| |
Collapse
|
4
|
Miura S, Ueda K, Minakawa K, Nollet KE, Ikeda K. Prospects and Potential for Chimerism Analysis after Allogeneic Hematopoietic Stem Cell Transplantation. Cells 2024; 13:993. [PMID: 38891125 PMCID: PMC11172215 DOI: 10.3390/cells13110993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
Chimerism analysis after allogeneic hematopoietic stem cell transplantation serves to confirm engraftment, indicate relapse of hematologic malignancy, and attribute graft failure to either immune rejection or poor graft function. Short tandem repeat PCR (STR-PCR) is the prevailing method, followed by quantitative real-time PCR (qPCR), with detection limits of 1-5% and 0.1%, respectively. Chimerism assays using digital PCR or next-generation sequencing, both of which are more sensitive than STR-PCR, are increasingly used. Stable mixed chimerism is usually not associated with poor outcomes in non-malignant diseases, but recipient chimerism may foretell relapse of hematologic malignancies, so higher detection sensitivity may be beneficial in such cases. Thus, the need for and the type of intervention, e.g., immunosuppression regimen, donor lymphocyte infusion, and/or salvage second transplantation, should be guided by donor chimerism in the context of the feature and/or residual malignant cells of the disease to be treated.
Collapse
Affiliation(s)
- Saori Miura
- Department of Clinical Laboratory Sciences, Fukushima Medical University School of Health Sciences, Fukushima 960-8516, Japan
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Koki Ueda
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Keiji Minakawa
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Kenneth E. Nollet
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Kazuhiko Ikeda
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| |
Collapse
|
5
|
Moriguchi M, Ido K, Okamura H, Nakamae M, Sakatoku K, Makuuchi Y, Kuno M, Takakuwa T, Hirose A, Nishimoto M, Nakashima Y, Koh H, Hino M, Nakamae H. Impacts of Posttransplant Cyclophosphamide Dose on Graft-versus-Leukemia Effects via HLA-B Leader in HLA-Haploidentical Peripheral Blood Stem Cell Transplantation. Acta Haematol 2024; 147:661-670. [PMID: 38432202 DOI: 10.1159/000538078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
INTRODUCTION The graft-versus-leukemia effect of HLA-B leader dimorphism, i.e., methionine (M) or threonine (T) at position -21 of the leader sequence, has been observed in HLA-haploidentical hematopoietic cell transplantation with posttransplant cyclophosphamide (PTCy-haplo). However, the biological mechanism has been unclear, and the contributions of HLA-B leader genotype to risk reduction of relapse might be dependent on posttransplant cyclophosphamide (PTCy) doses. METHODS To investigate whether the effect of HLA-B leader dimorphism was modified by the PTCy dose, we retrospectively analyzed 99 patients who received PTCy-haplo. RESULTS In the low-dose PTCy group, the patient M+ HLA-B leader genotype did not significantly affect the cumulative incidence of relapse (CIR) but negatively impacted the overall survival (OS) compared to the M- genotype. In contrast, in the high-dose PTCy group, patients with the M+ genotype had a decreased CIR, but no significant difference in the OS was observed between patients with the M+ and M- genotypes. Regardless of PTCy doses, the patient M+ genotype had detrimental effects on nonrelapse mortality. CONCLUSION Our findings suggest that the effect of the patient HLA-B leader genotype is modified by the PTCy dose, providing immunological insight into the PTCy dosage and supporting further studies to investigate the underlying mechanisms.
Collapse
Affiliation(s)
- Makoto Moriguchi
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Department of Hematology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kentaro Ido
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Department of Laboratory Medicine and Medical Informatics, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Hiroshi Okamura
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Department of Laboratory Medicine and Medical Informatics, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Mika Nakamae
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Department of Laboratory Medicine and Medical Informatics, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Kazuki Sakatoku
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Yosuke Makuuchi
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Masatomo Kuno
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Teruhito Takakuwa
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Asao Hirose
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Mitsutaka Nishimoto
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Yasuhiro Nakashima
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Hideo Koh
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Department of Preventive Medicine and Environmental Health, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Masayuki Hino
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Department of Laboratory Medicine and Medical Informatics, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Hirohisa Nakamae
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Department of Laboratory Medicine and Medical Informatics, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
6
|
Nagler A, Labopin M, Swoboda R, Kulagin A, Velardi A, Sanz J, Labussière-Wallet H, Potter V, Kuball J, Sica S, Parovichnikova E, Bethge W, Maillard N, Platzbecker U, Stölzel F, Ciceri F, Mohty M. Long-term outcome of second allogeneic hematopoietic stem cell transplantation (HSCT2) for primary graft failure in patients with acute leukemia in remission: A study on behalf of the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation. Bone Marrow Transplant 2023; 58:1008-1016. [PMID: 37253804 DOI: 10.1038/s41409-023-02012-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/07/2023] [Accepted: 05/15/2023] [Indexed: 06/01/2023]
Abstract
Second transplantation (HSCT2) is a potential treatment for primary graft failure (pGF). We assessed the outcome of HSCT2, performed between 2000 and 2021, for pGF in 243 patients with acute leukemia. Median age was 44.8 years. Conditioning at first HSCT (HSCT1) was myeloablative (MAC) in 58.4%. Median time from HSCT1 to HSCT2 was 48 days. Donors for HSCT2 were the same as for HSCT1 in 49%. Engraftment post HSCT2 was achieved by 73.7% of patients. The incidence of acute (a) graft versus host disease (GVHD) grades II-IV and III-IV was 23.2 and 8.1%. 5-year total and extensive chronic (c) GVHD was 22.3 and 10.1%. 5-year nonrelapse mortality (NRM), relapse incidence (RI), leukemia-free survival (LFS), overall survival (OS) and GVHD free, relapse-free survival (GRFS) was 51.6, 18.8, 29.6, 30.7 and 22.4%, respectively. Infections were the main cause of death. In multivariable analysis, being transplanted at second vs. first remission, lower Karnofsky performance status (KPS; <90) and receiving MAC at HSCT1 were adverse prognostic factors for NRM, LFS, OS, and GRFS, as was increased age for NRM, LFS, OS. We conclude that HSCT2 can rescue about a third of the patients who experienced pGF, but NRM is as high as 50%.
Collapse
Affiliation(s)
- Arnon Nagler
- Division of Hematology, Sheba Medical Center, Tel Hashomer, Israel.
| | - Myriam Labopin
- EBMT Paris study office; Department of Hematology, Saint Antoine Hospital; INSERM UMR 938, Sorbonne University, Paris, France
- Department of Hematology, Saint Antoine Hospital; INSERM UMR 938, Sorbonne University, Paris, France
| | - Ryszard Swoboda
- Department of Bone Marrow Transplantation and Onco-Hematology, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Alexander Kulagin
- First State Pavlov Medical University of St. Petersburg, Raisa Gorbacheva Memorial Research Institute for Paediatric Oncology, Hematology, and Transplantation, St Petersburg, Russia
| | - Andrea Velardi
- Sezione di Ematologia, Dipartimento di Medicina Clinica e Sperimentale, Università di Perugia, Ospedale Santa Maria della, Perugia, Italy
| | - Jaime Sanz
- Hematology Department, University Hospital La Fe, Valencia, Spain
| | | | - Victoria Potter
- Dept. of Haematological Medicine, Kings College Hospital, London, United Kingdom
| | - Jürgen Kuball
- University Medical Centre Dept. of Haematology, Utrecht, The Netherlands
| | - Simona Sica
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Elena Parovichnikova
- National Research Center for Hematology, Bone Marrow Transplantation, Moscow, Russia
| | - Wolfgang Bethge
- Universitaet Tuebingen, Medizinische Klinik, Tuebingen, Germany
| | - Natacha Maillard
- Hopital La Miletrie Bone Marrow TransplantUnit, Clinical Hematology, Poitiers, France
| | - Uwe Platzbecker
- Medical Clinic and Policinic 1, Hematology and Cellular Therapy, University hospital Leipzig, Leipzig, Germany
| | - Friedrich Stölzel
- Department of Hematology and Oncology, Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden, Dresden, Germany
- Department of Medicine II, Division for Stem Cell Transplantation and Cellular Immunotherapy, University Hospital Schleswig-Holstein Kiel, Kiel University, Kiel, Germany
| | - Fabio Ciceri
- Ospedale San Raffaele s.r.l. Haematology and BMT, Milano, Italy
| | - Mohamad Mohty
- EBMT Paris study office; Department of Hematology, Saint Antoine Hospital; INSERM UMR 938, Sorbonne University, Paris, France
- Department of Hematology, Saint Antoine Hospital; INSERM UMR 938, Sorbonne University, Paris, France
- Department of Hematology, Hospital Saint Antoine, EBMT Paris Study Office/CEREST-TC, Saint Antoine Hospital, Paris, France
| |
Collapse
|
7
|
Baron F, Ruggeri A, Peczynski C, Labopin M, Bourhis JH, Michallet M, Chevallier P, Sanz J, Forcade E, Saccardi R, Potter V, Gluckman E, Nagler A, Mohty M. Outcomes of graft failure after umbilical cord blood transplantation in acute leukemia: a study from Eurocord and the Acute Leukemia Working Party of the EBMT. Bone Marrow Transplant 2023; 58:936-941. [PMID: 37165084 DOI: 10.1038/s41409-023-02000-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 03/29/2023] [Accepted: 04/21/2023] [Indexed: 05/12/2023]
Abstract
Graft failure has remained a limitation of umbilical cord blood transplantation (CBT). Here, we assessed the outcomes of patients who experienced graft failure after CBT. Inclusion criteria were patients (age ≥ 18 years) experiencing graft failure after unrelated CBT (single or double) between 2005 and 2016, for acute myelogenous leukemia (AML) or acute lymphoblastic leukemia (ALL), no prior allogeneic or autologous transplantation, no other stem cell product. The study included 87 patients. At 1-year, cumulative incidence of relapse and nonrelapse mortality (NRM) was 35% and 37%, respectively. One-year overall survival (OS) and progression-free survival (PFS) was 40% and 29%, respectively. Forty-six patients underwent a salvage second transplantation with 1-year and 2-year OS and PFS from second transplantation 41% and 34% for OS, and 37% and 34% for PFS, respectively. In multivariate analysis, complete remission (CR) at CBT (HR = 0.45, 95% CI 0.25-0.83, P = 0.01) and reduced-intensity conditioning (HR = 0.51, 95% CI 0.29-0.91, P = 0.023) were associated with better OS. In conclusion, in this retrospective study, we observed that approximately one-quarter of patients experiencing graft failure after CBT remained alive without relapse 2 years later.
Collapse
Affiliation(s)
| | - Annalisa Ruggeri
- Eurocord, Saint Louis Hospital, Paris, France and Centre scientifique de Monaco, Paris, Monaco
- IRCCS San Raffaele Scientific Institute,department of Hematologogy and BMT, Milano, Italy
| | - Christophe Peczynski
- Department of Haematology, Saint Antoine Hospital, Paris, France
- EBMT Paris study office/CEREST-TC, Paris, France
- INSERM UMR 938, Paris, France
- Sorbonne university, Paris, France
| | - Myriam Labopin
- Department of Haematology, Saint Antoine Hospital, Paris, France
- EBMT Paris study office/CEREST-TC, Paris, France
- INSERM UMR 938, Paris, France
- Sorbonne university, Paris, France
| | - Jean-Henri Bourhis
- Gustave Roussy, institut de cancérologie, BMT Service, Division of Hematology, Villejuif, France
| | - Mauricette Michallet
- Service d'Hématologie du Centre de lutte contre le Cancer Léon Bérard, Lyon, France
| | | | - Jaime Sanz
- University Hospital La Fe, Hematology Department, Valencia, Spain
| | - Edouard Forcade
- Service d'Hématologie Clinique et Thérapie Cellulaire, CHU Bordeaux, F-33000, Bordeaux, France
| | - Riccardo Saccardi
- Azienda Ospedaliera Universitaria Careggi, Cell Therapy and Transfusion Medicine Unit, Firenze, Italy
| | | | - Eliane Gluckman
- Eurocord, Saint Louis Hospital, Paris, France and Centre scientifique de Monaco, Paris, Monaco
| | - Arnon Nagler
- Division of Hematology and Bone Marrow Transplantation, The Chaim Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel and the EBMT Paris Office, Hospital Saint Antoine, Paris, France
| | - Mohamad Mohty
- Department of Haematology, Saint Antoine Hospital, Paris, France
- EBMT Paris study office/CEREST-TC, Paris, France
- INSERM UMR 938, Paris, France
- Sorbonne university, Paris, France
| |
Collapse
|
8
|
Ramanathan S, Lum SH, Nademi Z, Carruthers K, Watson H, Flood T, Owens S, Williams E, Hambleton S, Gennery AR, Slatter M. CD3+TCRαβ/CD19+ depleted mismatched family or unrelated donor salvage stem cell transplantation for graft dysfunction in inborn errors of immunity. Transplant Cell Ther 2023:S2666-6367(23)01321-0. [PMID: 37279857 DOI: 10.1016/j.jtct.2023.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/13/2023] [Accepted: 05/25/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND A minority of children experience significant graft dysfunction after an allogeneic hematopoietic stem cell transplant (HSCT) for inborn errors of immunity (IEI). The optimal approach to salvage HSCT is unclear with respect to conditioning regimen and stem cell source. This single-centre retrospective case series reports the outcomes of salvage CD3+TCRαβ/CD19 depleted mismatched family or unrelated donor stem cell transplantation (TCRαβ-SCT) between 2013 - 2022 for graft dysfunction in 12 children with IEI. OBJECTIVES Outcomes of interest were overall survival (OS), event free survival (EFS), graft-versus-host disease (GvHD)-free and event-free survival (GEFS), toxicities, GvHD, viremia and long-term graft function. STUDY DESIGN A retrospective audit of patients who underwent second CD3+TCRαβ/CD19 depleted mismatched donor graft using Treosulfan-based reduced toxicity myeloablative conditioning. RESULTS Median age at first HSCT was 8.76 months (range, 2.5 months - 6 years) and at second TCRαβ-SCT was 3.6 years (1.2 - 11 years). Median interval between first and second HSCT was 1.7 years (3 months - 9 years). The primary diagnoses were: severe combined immunodeficiency (SCID) (n=5) and non-SCID IEI (n=7). The indications for second HSCT were: primary aplasia (n=1), secondary autologous reconstitution (n=6), refractory aGVHD (n=3) and secondary leukemia (n=1). Donors were either haploidentical parental donors (n=10) or mismatched unrelated donors (n=2). All received TCRαβ/CD19-depleted-PBSC with a median CD34+ cell dose of 9.3 × 106/kg (2.8-32.3 × 106/kg) and a median TCRαβ+ cell dose of 4 × 104/kg (1.3-19.2 × 104/kg). All engrafted with median days to neutrophil and platelet recovery of 15 (12-24) and 12 (9-19). One developed secondary aplasia and one had secondary autologous reconstitution, but both underwent a successful third HSCT. Four (33%) had grade II aGvHD and none had grade III-IV aGvHD. None had cGvHD but one developed extensive cutaneous cGVHD after third HSCT using PBSC and ATG. Nine (75%) were noted to have at least one episode of blood viremia with HHV6 (n=6, 50%), adenovirus (n=6, 50%), EBV (n=3, 25%) or CMV (n=3; 25%). Median duration of follow-up was 2.3 years (range: 0.5 - 10 years) and the 2-year OS, EFS and GEFS were 100% (95% confidence interval, 0-100%), 73% (37-90%) and 73% (37%-90%) respectively. CONCLUSIONS TCRαβ-SCT from mismatched family or unrelated donors, using a chemotherapy only regimen, is a safe alternative donor salvage transplant strategy for second HSCT in patients without a suitably matched donor.
Collapse
Affiliation(s)
- Subramaniam Ramanathan
- Department of Paediatric Hematopoietic Stem Cell Transplant, Great North Children's Hospital, Royal Victoria Infirmary, Newcastle Upon Tyne, NE1 4LP, United Kingdom
| | - Su Han Lum
- Department of Paediatric Hematopoietic Stem Cell Transplant, Great North Children's Hospital, Royal Victoria Infirmary, Newcastle Upon Tyne, NE1 4LP, United Kingdom
| | - Zohreh Nademi
- Department of Paediatric Hematopoietic Stem Cell Transplant, Great North Children's Hospital, Royal Victoria Infirmary, Newcastle Upon Tyne, NE1 4LP, United Kingdom
| | - Kayleigh Carruthers
- Newcastle Advanced Therapies, Newcastle upon Tyne Hospital NHS Foundation Trust, Newcastle Upon Tyne, NE1 4LP, United Kingdom
| | - Helen Watson
- Blood Sciences, Newcastle upon Tyne Hospital NHS Foundation Trust, Newcastle Upon Tyne, NE1 4LP, United Kingdom
| | - Terence Flood
- Department of Paediatric Hematopoietic Stem Cell Transplant, Great North Children's Hospital, Royal Victoria Infirmary, Newcastle Upon Tyne, NE1 4LP, United Kingdom
| | - Stephen Owens
- Department of Paediatric Hematopoietic Stem Cell Transplant, Great North Children's Hospital, Royal Victoria Infirmary, Newcastle Upon Tyne, NE1 4LP, United Kingdom
| | - Eleri Williams
- Department of Paediatric Hematopoietic Stem Cell Transplant, Great North Children's Hospital, Royal Victoria Infirmary, Newcastle Upon Tyne, NE1 4LP, United Kingdom
| | - Sophie Hambleton
- Department of Paediatric Hematopoietic Stem Cell Transplant, Great North Children's Hospital, Royal Victoria Infirmary, Newcastle Upon Tyne, NE1 4LP, United Kingdom
| | - Andrew R Gennery
- Department of Paediatric Hematopoietic Stem Cell Transplant, Great North Children's Hospital, Royal Victoria Infirmary, Newcastle Upon Tyne, NE1 4LP, United Kingdom
| | - Mary Slatter
- Department of Paediatric Hematopoietic Stem Cell Transplant, Great North Children's Hospital, Royal Victoria Infirmary, Newcastle Upon Tyne, NE1 4LP, United Kingdom.
| |
Collapse
|