1
|
Alanazi M, Al-Kuraishy HM, Albuhadily AK, Al-Gareeb AI, Abdelaziz AM, Alexiou A, Papadakis M, Batiha GES. The protective effect of amylin in type 2 diabetes: Yes or no. Eur J Pharmacol 2025; 996:177593. [PMID: 40187597 DOI: 10.1016/j.ejphar.2025.177593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/26/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Amylin, which is also called a human islet amyloid polypeptide, is a peptide hormone made up of 37 amino acids that is released from pancreatic β cells. It helps keep blood sugar levels stable by controlling the release of insulin and glucagon. Various studies have indicated its involvement in the pathogenesis of type 2 diabetes (T2D) through the induction of apoptosis in pancreatic cells. Conversely, other studies found that amylin plays a critical role in the pathogenesis of T2D by affecting the release of insulin and glucagon. Therefore, amylin has protective and detrimental effects on the pathogenesis of T2D. Consequently, this review aims to discuss the beneficial and detrimental roles of amylin in T2D.
Collapse
Affiliation(s)
- Mansour Alanazi
- Department of Internal Medicine, College of Medicine, Northern Border University, Arar, Saudi Arabia.
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, 14132, Baghdad, Iraq.
| | - Ali K Albuhadily
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, 14132, Baghdad, Iraq.
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, 14132, Baghdad, Iraq; Jabir ibn Hayyan Medical University, Al-Ameer Qu, PO. Box13 Kufa, Najaf, Iraq.
| | - Ahmed M Abdelaziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University-Arish Branch, Arish, 45511, Egypt.
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India; Department of Research & Development, Funogen, Athens, 11741, Greece.
| | - Marios Papadakis
- University Hospital Witten-Herdecke, University of Witten, Herdecke, Heusnerstrasse 40, Wuppertal, 42283, Germany.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| |
Collapse
|
2
|
Arias-Carrión O, Guerra-Crespo M, Padilla-Godínez FJ, Soto-Rojas LO, Manjarrez E. α-Synuclein Pathology in Synucleinopathies: Mechanisms, Biomarkers, and Therapeutic Challenges. Int J Mol Sci 2025; 26:5405. [PMID: 40508212 PMCID: PMC12155115 DOI: 10.3390/ijms26115405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2025] [Revised: 05/29/2025] [Accepted: 06/03/2025] [Indexed: 06/16/2025] Open
Abstract
Parkinson's disease and related synucleinopathies, including dementia with Lewy bodies and multiple system atrophy, are characterised by the pathological aggregation of the α-synuclein (aSyn) protein in neuronal and glial cells, leading to cellular dysfunction and neurodegeneration. This review synthesizes knowledge of aSyn biology, including its structure, aggregation mechanisms, cellular interactions, and systemic influences. We highlight the structural diversity of aSyn aggregates, ranging from oligomers to fibrils, their strain-like properties, and their prion-like propagation. While the role of prion-like mechanisms in disease progression remains a topic of ongoing debate, these processes may contribute to the clinical heterogeneity of synucleinopathies. Dysregulation of protein clearance pathways, including chaperone-mediated autophagy and the ubiquitin-proteasome system, exacerbates aSyn accumulation, while post-translational modifications influence its toxicity and aggregation propensity. Emerging evidence suggests that immune responses and alterations in the gut microbiome are key modulators of aSyn pathology, linking peripheral processes-particularly those of intestinal origin-to central neurodegeneration. Advances in biomarker development, such as cerebrospinal fluid assays, post-translationally modified aSyn, and real-time quaking-induced conversion technology, hold promise for early diagnosis and disease monitoring. Furthermore, positron emission tomography imaging and conformation-specific antibodies offer innovative tools for visualising and targeting aSyn pathology in vivo. Despite significant progress, challenges remain in accurately modelling human synucleinopathies, as existing animal and cellular models capture only specific aspects of the disease. This review underscores the need for more reliable aSyn biomarkers to facilitate the development of effective treatments. Achieving this goal requires an interdisciplinary approach integrating genetic, epigenetic, and environmental insights.
Collapse
Affiliation(s)
- Oscar Arias-Carrión
- Experimental Neurology, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City 14380, Mexico
| | - Magdalena Guerra-Crespo
- Laboratory of Regenerative Medicine, Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04360, Mexico; (M.G.-C.); (F.J.P.-G.)
| | - Francisco J. Padilla-Godínez
- Laboratory of Regenerative Medicine, Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04360, Mexico; (M.G.-C.); (F.J.P.-G.)
- Department of Mathematics and Physics, Western Institute of Technology and Higher Education, San Pedro Tlaquepaque 45604, Mexico
| | - Luis O. Soto-Rojas
- Laboratory of Molecular Pathogenesis, Building A4, Medical Surgeon Career, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico, Mexico City 54090, Mexico;
| | - Elías Manjarrez
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, 14 Sur 6301, Col. San Manuel, Apartado Postal 406, Puebla 72570, Mexico;
| |
Collapse
|
3
|
Shukla M, Narayan M. Proteostasis and Its Role in Disease Development. Cell Biochem Biophys 2025; 83:1725-1741. [PMID: 39422790 PMCID: PMC12123047 DOI: 10.1007/s12013-024-01581-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2024] [Indexed: 10/19/2024]
Abstract
Proteostasis (protein homeostasis) refers to the general biological process that maintains the proper balance between the synthesis of proteins, their folding, trafficking, and degradation. It ensures proteins are functional, locally distributed, and appropriately folded inside cells. Genetic information enclosed in mRNA is translated into proteins. To ensure newly synthesized proteins take on the exact three-dimensional conformation, molecular chaperones assist in proper folding. Misfolded proteins can be refolded or targeted for elimination to stop aggregation. Cells utilize different degradation pathways, for instance, the ubiquitin-proteasome system, the autophagy-lysosome pathway, and the unfolded protein response, to degrade unwanted or damaged proteins. Quality control systems of the cell monitor the folding of proteins. These checkpoint mechanisms are aimed at degrading or refolding misfolded or damaged proteins. Under stress response pathways, such as heat shock response and unfolded protein response, which are triggered under conditions that perturb proteostasis, the capacity for folding is increased, and degradation pathways are activated to help cells handle stressful conditions. The deregulation of proteostasis is implicated in a variety of illnesses, comprising cancer, metabolic diseases, cardiovascular diseases, and neurological disorders. Therapeutic strategies with a deeper insight into the mechanism of proteostasis are crucial for the treatment of illnesses linked with proteostasis and to support cellular health. Thus, proteostasis is required not only for the maintenance of cellular homeostasis and function but also for proper protein function and prevention of injurious protein aggregation. In this review, we have covered the concept of proteostasis, its mechanism, and how disruptions to it can result in a number of disorders.
Collapse
Affiliation(s)
- Manisha Shukla
- Department of Biotechnology, Pandit S.N. Shukla University, Shahdol, Madhya Pradesh, India
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, University of Texas, El Paso, TX, USA.
| |
Collapse
|
4
|
Ochoa Mendoza V, de Oliveira AA, Nunes KP. Blockade of HSP70 Improves Vascular Function in a Mouse Model of Type 2 Diabetes. Cells 2025; 14:424. [PMID: 40136673 PMCID: PMC11941590 DOI: 10.3390/cells14060424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/08/2025] [Accepted: 03/11/2025] [Indexed: 03/27/2025] Open
Abstract
Type 2 diabetes (T2D) is a chronic disease that damages blood vessels and increases the risk of cardiovascular disease (CVD). Heat-shock protein 70 (HSP70), a family of chaperone proteins, has been recently reported as a key player in vascular reactivity that affects large blood vessels like the aorta. Hyperglycemia, a hallmark of diabetes, correlates with the severity of vascular damage and circulating HSP70 levels. In diabetes, blood vessels often show impaired contractility, contributing to vascular dysfunction. However, HSP70's specific role in T2D-related vascular contraction remains unclear. We hypothesized that blocking HSP70 would improve vascular function in a widely used diabetic mouse model (db/db). To test this, we measured both vascular intracellular and serum circulating HSP70 levels in control and diabetic male mice using immunofluorescence and Western blotting. We also examined the aorta's contractile response using a wire myograph system, which measured the force produced in response to phenylephrine (PE), both with and without VER155008, a pharmacological inhibitor that targets the ATPase domain of HSP70, and after removing extracellular calcium. Our findings show that intracellular HSP70 (iHSP70) levels were similar in control and diabetic groups, while circulating HSP70 (eHSP70) levels were higher in the serum of diabetic mice, altering the iHSP70/eHSP70 ratio. Even though VER155008 attenuated both phases of the contractile curve in the diabetic and control groups, enhanced vasoconstriction to PE was only observed in the tonic phase of the curve in the db/db group, which was prevented by iHSP70 inhibition. This effect involved calcium mobilization, as both the maximal and total contraction forces to PE were restored in groups treated with VER155008. Additionally, internal calcium levels in aortic rings treated with VER155008 decreased, as observed in force generation upon calcium reintroduction, which was further corroborated using a biochemical calcium assay. In conclusion, our study demonstrates that blocking HSP70 improves vascular reactivity in the hyperglycemic state of T2D by restoring proper vascular contraction.
Collapse
Affiliation(s)
| | | | - Kenia Pedrosa Nunes
- Laboratory of Vascular Biology, Department of Biomedical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA; (V.O.M.)
| |
Collapse
|
5
|
Gu J, He Y, He C, Zhang Q, Huang Q, Bai S, Wang R, You Q, Wang L. Advances in the structures, mechanisms and targeting of molecular chaperones. Signal Transduct Target Ther 2025; 10:84. [PMID: 40069202 PMCID: PMC11897415 DOI: 10.1038/s41392-025-02166-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/25/2024] [Accepted: 01/15/2025] [Indexed: 03/15/2025] Open
Abstract
Molecular chaperones, a class of complex client regulatory systems, play significant roles in the prevention of protein misfolding and abnormal aggregation, the modulation of protein homeostasis, and the protection of cells from damage under constantly changing environmental conditions. As the understanding of the biological mechanisms of molecular chaperones has increased, their link with the occurrence and progression of disease has suggested that these proteins are promising targets for therapeutic intervention, drawing intensive interest. Here, we review recent advances in determining the structures of molecular chaperones and heat shock protein 90 (HSP90) chaperone system complexes. We also describe the features of molecular chaperones and shed light on the complicated regulatory mechanism that operates through interactions with various co-chaperones in molecular chaperone cycles. In addition, how molecular chaperones affect diseases by regulating pathogenic proteins has been thoroughly analyzed. Furthermore, we focus on molecular chaperones to systematically discuss recent clinical advances and various drug design strategies in the preclinical stage. Recent studies have identified a variety of novel regulatory strategies targeting molecular chaperone systems with compounds that act through different mechanisms from those of traditional inhibitors. Therefore, as more novel design strategies are developed, targeting molecular chaperones will significantly contribute to the discovery of new potential drugs.
Collapse
Affiliation(s)
- Jinying Gu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yanyi He
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chenxi He
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qiuyue Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qifei Huang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shangjun Bai
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ruoning Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
- Jiangsu Provincial TCM Engineering Technology Research Center of Highly Efficient Drug Delivery Systems (DDSs), Nanjing, China.
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
6
|
Jiao XF, Gao Y, Ni R, Zhao WY, Zhao C, Lu X, Zhang HF, Gao W, Luo L. Low serum HSPA12B levels are associated with an increased risk of sarcopenia in a Chinese population of older adults. Cell Stress Chaperones 2025; 30:100-108. [PMID: 39983811 PMCID: PMC11909431 DOI: 10.1016/j.cstres.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/15/2025] [Accepted: 02/17/2025] [Indexed: 02/23/2025] Open
Abstract
Sarcopenia is a geriatric syndrome characterized by progressive loss of muscle mass and function. Heat shock protein (HSP) A12B is essential for angiogenesis and endothelial function. However, the association of HSPA12B levels with sarcopenia remains unclear. A total of 936 community-dwelling elderly people were recruited, and serum HSPA12B was measured by enzyme-linked immunosorbent assay. Appendicular skeletal muscle mass index (ASMI), grip strength, and gait speed were taken to assess sarcopenia. We found that serum HSPA12B levels in patients with sarcopenia (median [interquartile range] = 182.15 [137.58-225.86] ng/mL) were lower than those in elderly people without sarcopenia (228.96 [193.03-292.93] ng/mL, P < 0.001). Receiver operating characteristic curve analysis indicated that the optimal cut-off value of serum HSPA12B level for predicting sarcopenia was 185.50 ng/mL, with a sensitivity of 52.6% and a specificity of 80.8% (area under curve = 0.742, 95% confidence interval [CI] = 0.711-0.772, P < 0.001). Moreover, serum HSPA12B concentration was positively correlated with ASMI (r = 0.354, P < 0.001), grip strength (r = 0.381, P < 0.001), and gait speed (r = 0.169, P < 0.001). Multivariate logistic regression analysis showed that decreased serum HSPA12B levels (<185.50 ng/mL) were a risk factor for increased risk of sarcopenia (adjusted odds ratio = 4.335, 95% CI = 3.136-5.993, P < 0.001). In addition, serum HSPA12B level was also positively correlated with serum levels of angiogenesis markers, vascular endothelial growth factor (r = 0.080, P = 0.014), and angiopoietin-1 (r = 0.108, P = 0.001). In summary, our results indicate that low serum HSPA12B level is associated with an increased risk of sarcopenia in the elderly, suggesting a potential role of HSPA12B in the development of sarcopenia.
Collapse
Affiliation(s)
- Xin-Feng Jiao
- Department of Geriatrics, Affiliated Hospital of Nantong University, Nantong, China
| | - Yue Gao
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ran Ni
- Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Wen-Ya Zhao
- Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Can Zhao
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Xiang Lu
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Hai-Feng Zhang
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Wei Gao
- Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.
| | - Lan Luo
- Department of Geriatrics, Affiliated Hospital of Nantong University, Nantong, China.
| |
Collapse
|
7
|
He Y, Ye M, Shen Z, Zhong Z, Xia Y, Li Q. Correlation between lipoprotein-associated phospholipase A2 and diabetic peripheral neuropathy in patients with type 2 diabetes mellitus: A cross-sectional study. J Diabetes Complications 2025; 39:108950. [PMID: 39817931 DOI: 10.1016/j.jdiacomp.2025.108950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/27/2024] [Accepted: 01/09/2025] [Indexed: 01/18/2025]
Abstract
BACKGROUND Lipoprotein-associated phospholipase A2 (Lp-PLA2) is an enzyme implicated in inflammation and oxidative stress, and has been associated with cardiovascular conditions and adverse outcomes, particularly in diabetes and its complications. However, no prior studies have examined the relationship between Lp-PLA2 and diabetic peripheral neuropathy (DPN) in patients with type 2 diabetes mellitus (T2DM). This research aims to explore the potential association between Lp-PLA2 and DPN. METHODS This retrospective study included 880 hospitalized patients with T2DM treated between March 2024 and August 2024 at Nanjing First Hospital. To assess the relationship between Lp-PLA2 and DPN, multiple logistic regression models were applied. The study also utilized restricted cubic spline (RCS) modeling, segmented regression, stratified analysis, and receiver operating characteristic (ROC) curve assessments. RESULTS Patients diagnosed with DPN exhibited elevated Lp-PLA2 levels compared to those without DPN. Even after adjusting for multiple variables, Lp-PLA2 was independently associated with a higher likelihood of DPN (odds ratio [OR] 1.011, 95 % confidence interval [CI] 1.008-1.014, P < 0.001). The RCS analysis revealed a nonlinear association, with an inflection point at 215.8 ng/mL. In ROC curve analysis, the area under the curve (AUC) for Lp-PLA2 was 0.664, while the combined indicator AUC was 0.739. CONCLUSIONS Serum Lp-PLA2 levels show a significant correlation with the presence of DPN in patients with T2DM. These findings suggest that Lp-PLA2 could serve as a valuable biomarker for identifying patients at risk for DPN, emphasizing the need for close monitoring of T2DM individuals with elevated Lp-PLA2 to mitigate the risk of developing DPN and associated adverse health outcomes.
Collapse
Affiliation(s)
- Yijia He
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Miaomin Ye
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ziyang Shen
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ziyi Zhong
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yin Xia
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qian Li
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
8
|
Villafan-Bernal JR, Barajas-Olmos F, Guzmán-Guzmán IP, Martínez-Hernández A, Contreras-Cubas C, García-Ortiz H, Morales-Rivera MI, Martínez-Portilla RJ, Orozco L. Relevant Serum Endoplasmic Reticulum Stress Biomarkers in Type 2 Diabetes and Its Complications: A Systematic Review and Meta-Analysis. Antioxidants (Basel) 2024; 13:1564. [PMID: 39765892 PMCID: PMC11673038 DOI: 10.3390/antiox13121564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Endoplasmic reticulum stress (ERS) is activated in all cells by stressors such as hyperglycemia. However, it remains unclear which specific serum biomarkers of ERS are consistently altered in type 2 diabetes (T2D). We aimed to identify serum ERS biomarkers that are consistently altered in T2D and its complications, and their correlation with metabolic and anthropometric variables. We performed a systematic review and meta-analysis following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and Meta-Analyses and Systematic Reviews of Observational Studies (MOOSE). The risk of bias was assessed using the Newcastle-Ottawa scale. Random-effects models weighted by the inverse variance were employed to estimate the standardized mean difference and correlations as effect size measures. Indicators of heterogeneity and meta-regressions were evaluated. Of the 1206 identified studies, 22 were finally included, representing 11,953 subjects (2224 with T2D and 9992 non-diabetic controls). Most studies were of high quality. Compared with controls, subjects with T2D had higher circulating levels of heat shock protein 70 (HSP70; SMD: 2.30, 95% CI 1.13-3.46; p < 0.001) and secretagogin (SMD: 0.60, 95%CI 0.19-1.01; p < 0.001). They also had higher serum levels of peroxiredoxin-1, -2, -4, and -6. Secretagogin inversely correlated with HOMA-IR, yet positively correlated with HOMA-B, HbA1c, and FPG. PRX4 negatively correlated with HbA1c and FPG, while HSP70 positively correlated with HbA1c. In conclusion, six ERS biomarkers are consistently elevated in human T2D and correlate with glycemic control, insulin resistance, and β-cell function. Emerging evidence links serum ERS biomarkers to diabetes complications, but further research should evaluate their prognostic implications.
Collapse
Affiliation(s)
- José Rafael Villafan-Bernal
- Immunogenomics and Metabolic Diseases Laboratory, Instituto Nacional de Medicina Genómica, SS, Mexico City 14610, Mexico; (F.B.-O.); (A.M.-H.); (C.C.-C.); (H.G.-O.); (M.I.M.-R.)
- Investigador por México, Consejo Nacional de Humanidades Ciencia y Tecnología (CONAHCYT), Mexico City 03940, Mexico
- Iberoamerican Research Network in Translational, Molecular and Maternal-Fetal Medicine, Mexico City 01010, Mexico;
| | - Francisco Barajas-Olmos
- Immunogenomics and Metabolic Diseases Laboratory, Instituto Nacional de Medicina Genómica, SS, Mexico City 14610, Mexico; (F.B.-O.); (A.M.-H.); (C.C.-C.); (H.G.-O.); (M.I.M.-R.)
| | - Iris Paola Guzmán-Guzmán
- Laboratory of Multidisciplinary Research and Biomedical Innovation, Universidad Autónoma de Guerrero, Chilpancingo 39086, Guerrero, Mexico;
| | - Angélica Martínez-Hernández
- Immunogenomics and Metabolic Diseases Laboratory, Instituto Nacional de Medicina Genómica, SS, Mexico City 14610, Mexico; (F.B.-O.); (A.M.-H.); (C.C.-C.); (H.G.-O.); (M.I.M.-R.)
| | - Cecilia Contreras-Cubas
- Immunogenomics and Metabolic Diseases Laboratory, Instituto Nacional de Medicina Genómica, SS, Mexico City 14610, Mexico; (F.B.-O.); (A.M.-H.); (C.C.-C.); (H.G.-O.); (M.I.M.-R.)
| | - Humberto García-Ortiz
- Immunogenomics and Metabolic Diseases Laboratory, Instituto Nacional de Medicina Genómica, SS, Mexico City 14610, Mexico; (F.B.-O.); (A.M.-H.); (C.C.-C.); (H.G.-O.); (M.I.M.-R.)
| | - Monserrat I. Morales-Rivera
- Immunogenomics and Metabolic Diseases Laboratory, Instituto Nacional de Medicina Genómica, SS, Mexico City 14610, Mexico; (F.B.-O.); (A.M.-H.); (C.C.-C.); (H.G.-O.); (M.I.M.-R.)
- Postdoctoral Researcher, Consejo Nacional de Humanidades Ciencias y Tecnologías, Mexico City 03940, Mexico
| | | | - Lorena Orozco
- Immunogenomics and Metabolic Diseases Laboratory, Instituto Nacional de Medicina Genómica, SS, Mexico City 14610, Mexico; (F.B.-O.); (A.M.-H.); (C.C.-C.); (H.G.-O.); (M.I.M.-R.)
| |
Collapse
|
9
|
Sharma P, Ma JX, Karamichos D. Effects of hypoxia in the diabetic corneal stroma microenvironment. Exp Eye Res 2024; 240:109790. [PMID: 38224848 DOI: 10.1016/j.exer.2024.109790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/15/2023] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
Corneal dysfunctions associated with Diabetes Mellitus (DM), termed diabetic keratopathy (DK), can cause impaired vision and/or blindness. Hypoxia affects both Type 1 (T1DM) and Type 2 (T2DM) surprisingly, the role of hypoxia in DK is unexplored. The aim of this study was to examine the impact of hypoxia in vitro on primary human corneal stromal cells derived from Healthy (HCFs), and diabetic (T1DMs and T2DMs) subjects, by exposing them to normoxic (21% O2) or hypoxic (2% O2) conditions through 2D and 3D in vitro models. Our data revealed that hypoxia affected T2DMs by slowing their wound healing capacity, leading to significant alterations in oxidative stress-related markers, mitochondrial health, cellular homeostasis, and endoplasmic reticulum health (ER) along with fibrotic development. In T1DMs, hypoxia significantly modulated markers related to membrane permeabilization, oxidative stress via apoptotic marker (BAX), and protein degradation. Hypoxic environment induced oxidative stress (NOQ1 mediated reduction of superoxide in T1DMs and Nrf2 mediated oxidative stress in T2DMs), modulation in mitochondrial health (Heat shock protein 27 (HSP27), and dysregulation of cellular homeostasis (HSP90) in both T1DMs and T2DMs. This data underscores the significant impact of hypoxia on the diabetic cornea. Further studies are warranted to delineate the complex interactions.
Collapse
Affiliation(s)
- Purnima Sharma
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX, 76107, USA; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX, 76107, USA.
| | - Jian-Xing Ma
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Dimitrios Karamichos
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX, 76107, USA; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX, 76107, USA; Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX, 76107, USA.
| |
Collapse
|
10
|
de Lemos Muller CH, Schroeder HT, Farinha JB, Lopez P, Reischak-Oliveira Á, Pinto RS, de Bittencourt Júnior PIH, Krause M. Effects of resistance training on heat shock response (HSR), HSP70 expression, oxidative stress, inflammation, and metabolism in middle-aged people. J Physiol Biochem 2024; 80:161-173. [PMID: 37930617 DOI: 10.1007/s13105-023-00994-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 10/20/2023] [Indexed: 11/07/2023]
Abstract
Resistance training (RT) can increase the heat shock response (HSR) in the elderly. As middle-aged subjects already suffer physiological declines related to aging, it is hypothesized that RT may increase the HSR in these people. To assess the effects of resistance training on heat shock response, intra and extracellular HSP70, oxidative stress, inflammation, body composition, and metabolism in middle-aged subjects. Sixteen volunteers (40 - 59 years) were allocated to two groups: the trained group (n = 7), which performed 12 weeks of RT; and the physically inactive-control group (n = 9), which did not perform any type of exercise. The RT program consisted of 9 whole-body exercises (using standard gym equipment) and functional exercises, carried out 3 times/week. Before and after the intervention, body composition, muscle mass, strength, functional capacity, and blood sample measurements (lipid profile, glucose, insulin, oxidative damage, TNF-α, the HSR, HSP70 expression in leukocytes, and HSP72 in plasma) were performed. The HSR analysis demonstrated that this response is maintained at normal levels in middle-aged people and that RT did not cause any improvement. Also, RT increases muscle mass, strength, and functional capacity. Despite no additional changes of RT on the antioxidant defenses (catalase, glutathione peroxidase, and reductase) or inflammation, lipid peroxidation was diminished by RT (group x time interaction, p = 0.009), indicating that other antioxidant defenses may be improved after RT. HSR is preserved in middle-aged subjects without metabolic complications. In addition, RT reduces lipid peroxidation and can retard muscle mass and strength loss related to the aging process.
Collapse
Affiliation(s)
- Carlos Henrique de Lemos Muller
- Laboratório de Inflamação, Metabolismo e Exercício (LAPIMEX) e Laboratório de Fisiologia Celular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil
| | - Helena Trevisan Schroeder
- Laboratório de Inflamação, Metabolismo e Exercício (LAPIMEX) e Laboratório de Fisiologia Celular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil
| | - Juliano Boufleur Farinha
- Programa de Pós-Graduação Em Ciências do Movimento Humano, Escola de Educação Física, Fisioterapia e Dança (ESEFID), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90690-200, Brazil
| | - Pedro Lopez
- Programa de Pós-Graduação Em Ciências do Movimento Humano, Escola de Educação Física, Fisioterapia e Dança (ESEFID), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90690-200, Brazil
- Exercise Medicine Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Álvaro Reischak-Oliveira
- Programa de Pós-Graduação Em Ciências do Movimento Humano, Escola de Educação Física, Fisioterapia e Dança (ESEFID), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90690-200, Brazil
| | - Ronei Silveira Pinto
- Programa de Pós-Graduação Em Ciências do Movimento Humano, Escola de Educação Física, Fisioterapia e Dança (ESEFID), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90690-200, Brazil
| | - Paulo Ivo Homem de Bittencourt Júnior
- Laboratório de Inflamação, Metabolismo e Exercício (LAPIMEX) e Laboratório de Fisiologia Celular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil
| | - Mauricio Krause
- Laboratório de Inflamação, Metabolismo e Exercício (LAPIMEX) e Laboratório de Fisiologia Celular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
11
|
Wang G, Jiang G, Peng R, Wang Y, Li J, Sima Y, Xu S. Multi-omics integrative analysis revealed characteristic changes in blood cell immunity and amino acid metabolism in a silkworm model of hyperproteinemia. Int J Biol Macromol 2024; 258:128809. [PMID: 38128801 DOI: 10.1016/j.ijbiomac.2023.128809] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
Hyperproteinemia is a serious metabolic disease of both humans and animals characterized by an abnormally high plasma protein concentration (HPPC). Although hyperproteinemia can cause an imbalance in blood cell homeostasis, the functional changes to blood cells remain unclear. Here, a HPPC silkworm model was used to assess changes to the chromatin accessibility and transcript levels of genes related to blood cell metabolism and immune function. The results showed that HPPC enhanced phagocytosis of blood cells, increased chromatin accessibility and transcript levels of genes involved in cell phagocytosis, proliferation, stress, and programmed death, while genes associated with aromatic amino acid metabolism, and antibacterial peptide synthesis were inhibited in blood cells. Further analysis of the chromatin accessibility of the promoter region found that the high chromatin accessibility of genes sensitive to HPPC, was related to histone modifications, including tri-methylation of lysine residue 4 of histone H3 and acetylation of lysine residue 27 of histone H3. Changes to the chromatin accessibility and transcript levels of genes related to immune function and amino acid metabolism in the blood cells of the HPPC silkworm model provided useful references for future studies of the mechanisms underlying epigenomic regulation mediated by hyperproteinemia.
Collapse
Affiliation(s)
- Guang Wang
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China; Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Guihua Jiang
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China; Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Ruji Peng
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China; Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Yongfeng Wang
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China; Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Jianglan Li
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China; Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Yanghu Sima
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China; Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Shiqing Xu
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China; Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China.
| |
Collapse
|
12
|
Schroeder HT, De Lemos Muller CH, Heck TG, Krause M, Homem de Bittencourt PI. Resolution of inflammation in chronic disease via restoration of the heat shock response (HSR). Cell Stress Chaperones 2024; 29:66-87. [PMID: 38309688 PMCID: PMC10939035 DOI: 10.1016/j.cstres.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024] Open
Abstract
Effective resolution of inflammation via the heat shock response (HSR) is pivotal in averting the transition to chronic inflammatory states. This transition characterizes a spectrum of debilitating conditions, including insulin resistance, obesity, type 2 diabetes, nonalcoholic fatty liver disease, and cardiovascular ailments. This manuscript explores a range of physiological, pharmacological, and nutraceutical interventions aimed at reinstating the HSR in the context of chronic low-grade inflammation, as well as protocols to assess the HSR. Monitoring the progression or suppression of the HSR in patients and laboratory animals offers predictive insights into the organism's capacity to combat chronic inflammation, as well as the impact of exercise and hyperthermic treatments (e.g., sauna or hot tub baths) on the HSR. Interestingly, a reciprocal correlation exists between the expression of HSR components in peripheral blood leukocytes (PBL) and the extent of local tissue proinflammatory activity in individuals afflicted by chronic inflammatory disorders. Therefore, the Heck index, contrasting extracellular 70 kDa family of heat shock proteins (HSP70) (proinflammatory) and intracellular HSP70 (anti-inflammatory) in PBL, serves as a valuable metric for HSR assessment. Our laboratory has also developed straightforward protocols for evaluating HSR by subjecting whole blood samples from both rodents and human volunteers to ex vivo heat challenges. Collectively, this discussion underscores the critical role of HSR disruption in the pathogenesis of chronic inflammatory states and emphasizes the significance of simple, cost-effective tools for clinical HSR assessment. This understanding is instrumental in the development of innovative strategies for preventing and managing chronic inflammatory diseases, which continue to exert a substantial global burden on morbidity and mortality.
Collapse
Affiliation(s)
- Helena Trevisan Schroeder
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Carlos Henrique De Lemos Muller
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Thiago Gomes Heck
- Post Graduate Program in Integral Health Care (PPGAIS-UNIJUÍ/UNICRUZ/URI), Regional University of Northwestern Rio Grande Do Sul State (UNIJUI) and Post Graduate Program in Mathematical and Computational Modeling (PPGMMC), UNIJUI, Ijuí, Rio Grande do Sul, Brazil
| | - Mauricio Krause
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Paulo Ivo Homem de Bittencourt
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
13
|
Esmaeilzadeh A, Mohammadi V, Elahi R, Rezakhani N. The role of heat shock proteins (HSPs) in type 2 diabetes mellitus pathophysiology. J Diabetes Complications 2023; 37:108564. [PMID: 37852076 DOI: 10.1016/j.jdiacomp.2023.108564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/05/2023] [Accepted: 07/21/2023] [Indexed: 10/20/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by sustained hyperglycemia caused by impaired insulin signaling and secretion. Metabolic stress, caused by an inappropriate diet, is one of the major hallmarks provoking inflammation, endoplasmic reticulum (ER) stress, and mitochondrial dysfunction. Heat shock proteins (HSPs) are a group of highly conserved proteins that have a crucial role in chaperoning damaged and misfolded proteins to avoid disruption of cellular homeostasis under stress conditions. To do this, HSPs interact with diverse intra-and extracellular pathways among which are the insulin signaling, insulin secretion, and apoptosis pathways. Therefore, HSP dysfunction, e.g. HSP70, may lead to disruption of the pathways responsible for insulin secretion and uptake. Consistently, the altered expression of other HSPs and genetic polymorphisms in HSP-producing genes in diabetic subjects has made HSPs hot research in T2DM. This paper provides a comprehensive overview of the role of different HSPs in T2DM pathogenesis, affected cellular pathways, and the potential therapeutic strategies targeting HSPs in T2DM.
Collapse
Affiliation(s)
- Abdolreza Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran; Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Vahid Mohammadi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Reza Elahi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Negin Rezakhani
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
14
|
de Lemos Muller CH, Schroeder HT, Rodrigues-Krause J, Krause M. Extra and intra cellular HSP70 levels in adults with and without metabolic disorders: a systematic review and meta-analysis. Cell Stress Chaperones 2023; 28:761-771. [PMID: 37495770 PMCID: PMC10746644 DOI: 10.1007/s12192-023-01368-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/30/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023] Open
Abstract
Metabolic disorders, such as obesity, type 2 diabetes mellitus (T2DM), and metabolic syndrome (MS) are related to chronic pro-inflammatory conditions. Evidence suggests that heat shock proteins are linked to metabolic disorders. Intracellular HSP70 (iHSP70) is mandatory for normal insulin signalling, and proteostasis, and exerts a powerful anti-inflammatory role. On the other hand, the extracellular (eHSP72) is linked with a pro-inflammatory state and induces insulin resistance in humans. Then, we conducted a systematic review with meta-analysis to summarize the data of HSP70 in people with and without metabolic disorders. PubMed, Embase, Scopus, and Web of Science databases were used. Eligibility criteria included observational and baseline data of experimental studies that assessed iHSP70 and/or eHSP72 in adults with metabolic disorders and healthy people. The risk of bias was assessed by the Newcastle-Ottawa scale. Meta-analysis was performed using a random-effect model and the mean difference was estimated for eHSP72 and the standardized mean difference for iHSP70. A total of 11,255 articles were retrieved, 31 articles were assessed for eligibility and 15 were included for data extraction. There was no difference in eHSP72 between metabolic disorders and healthy controls (mean difference (MD) = 0.11; 95% confidence interval (CIs) = -0.05 to 0.27; I2 = 95%). Subgroup analysis showed higher levels of eHSP72 in T2DM people than healthy ones (MD = 0.32; 95% CIs = 0.17 to 0.47; I2 = 92%). For iHSP70 no difference was found (standardized mean difference (SMD) =-0.24; 95% CIs =-1.62 to 1.15; I2 = 86%). Our results suggest that eHSP72 levels may be dependent on metabolic condition and no difference in iHSP70 levels are attributed to high heterogeneity level between studies (PROSPERO REGISTRATION: CRD42022323514).
Collapse
Affiliation(s)
- Carlos Henrique de Lemos Muller
- Laboratório de Pesquisa em Inflamação, Metabolismo e Exercício (LAPIMEX) E Laboratório de Fisiologia Celular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil
| | - Helena Trevisan Schroeder
- Laboratório de Pesquisa em Inflamação, Metabolismo e Exercício (LAPIMEX) E Laboratório de Fisiologia Celular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil
| | - Josianne Rodrigues-Krause
- Programa de Pós-Graduação Em Ciências Do Movimento Humano, Escola de Educação Física, Fisioterapia E Dança (ESEFID), Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, 90690-200, Brazil
- Department of Physical Education, Physical Activity, Sport and Health Research Group, Sogipa Faculty, Porto Alegre, RS, Brazil
| | - Maurício Krause
- Laboratório de Pesquisa em Inflamação, Metabolismo e Exercício (LAPIMEX) E Laboratório de Fisiologia Celular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
15
|
Jayashree K, Senthilkumar GP, Parameswaran S, Vadivelan M. Association of elevated extracellular HSP72 in albuminuria with systemic inflammation and disease progression in type 2 diabetic kidney disease. Clin Biochem 2023; 121-122:110682. [PMID: 37926404 DOI: 10.1016/j.clinbiochem.2023.110682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Sub-clinical inflammation in hyperglycemia is tied to the pathogenesis of diabetic kidney disease (DKD). Though well known for its immunostimulatory function, the significance of extracellular heat shock protein 72 (eHSP72) in DKD is not well studied. We aimed to determine the association of extracellular HSP72 with systemic inflammation and the progression of DKD, and explore its possible clinical significance in DKD. METHODS 160 type 2 diabetic individuals were enrolled in the study. Their anthropometric data, routine biochemical parameters, urinary renal function parameters, and blood count parameters were estimated. Plasma from patients' blood samples were used to estimate HSP72 and interleukin 1β (IL-1β) using sandwich immunoassays. RESULTS Plasma eHSP72 is elevated in DKD. Pairwise comparisons showed the drastic elevation of eHSP72 in the presence of albuminuria. A significant positive relationship was observed between plasma levels of eHSP72 and IL-1β. eHSP72 levels did not statistically differ between micro and macro-albuminuric DKD. However, it was inversely associated with estimated glomerular filtration rate, the index of disease severity, independent of age, gender, diabetes duration and absolute monocyte count. At a cutoff of 0.52 ng/ml, with sensitivity of 64.1 % and specificity of 69.2 %, plasma eHSP72 differentiated the presence of DKD in type 2 diabetics with statistical significance. CONCLUSION The positive relationship of eHSP72 and IL-1β with worsening DKD likely indicates their participation in immunostimulatory pathways of renal fibrosis. eHSP72 may be closely linked to albuminuria-induced tubular injury and likely contributes to fibrotic changes in the progression of DKD. From our study, we infer the possible clinical significance of eHSP72 as a marker of sub-clinical renal damage in DKD, and the implication of IL-1β-associated mechanisms in DKD progression.
Collapse
Affiliation(s)
- Kuppuswami Jayashree
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | | | - Sreejith Parameswaran
- Department of Nephrology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Mehalingam Vadivelan
- Department of Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| |
Collapse
|
16
|
Klyosova E, Azarova I, Buikin S, Polonikov A. Differentially Expressed Genes Regulating Glutathione Metabolism, Protein-Folding, and Unfolded Protein Response in Pancreatic β-Cells in Type 2 Diabetes Mellitus. Int J Mol Sci 2023; 24:12059. [PMID: 37569434 PMCID: PMC10418503 DOI: 10.3390/ijms241512059] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/12/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Impaired redox homeostasis in the endoplasmic reticulum (ER) may contribute to proinsulin misfolding and thus to activate the unfolded protein response (UPR) and apoptotic pathways, culminating in pancreatic β-cell loss and type 2 diabetes (T2D). The present study was designed to identify differentially expressed genes (DEGs) encoding enzymes for glutathione metabolism and their impact on the expression levels of genes regulating protein folding and UPR in β-cells of T2D patients. The GEO transcriptome datasets of β-cells of diabetics and non-diabetics, GSE20966 and GSE81608, were analyzed for 142 genes of interest using limma and GREIN software, respectively. Diabetic β-cells showed dataset-specific patterns of DEGs (FDR ≤ 0.05) implicated in the regulation of glutathione metabolism (ANPEP, PGD, IDH2, and CTH), protein-folding (HSP90AB1, HSP90AA1, HSPA1B, HSPA8, BAG3, NDC1, NUP160, RLN1, and RPS19BP1), and unfolded protein response (CREB3L4, ERP27, and BID). The GCLC gene, encoding the catalytic subunit of glutamate-cysteine ligase, the first rate-limiting enzyme of glutathione biosynthesis, was moderately down-regulated in diabetic β-cells from both datasets (p ≤ 0.05). Regression analysis established that genes involved in the de novo synthesis of glutathione, GCLC, GCLM, and GSS affect the expression levels of genes encoding molecular chaperones and those involved in the UPR pathway. This study showed for the first time that diabetic β-cells exhibit alterations in the expression of genes regulating glutathione metabolism, protein-folding, and UPR and provided evidence for the molecular crosstalk between impaired redox homeostasis and abnormal protein folding, underlying ER stress in type 2 diabetes.
Collapse
Affiliation(s)
- Elena Klyosova
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia; (E.K.); (I.A.)
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia
| | - Iuliia Azarova
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia; (E.K.); (I.A.)
- Department of Biological Chemistry, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia
| | - Stepan Buikin
- Centre of Omics Technology, I.M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya Street, 119991 Moscow, Russia;
- Department of Internal Diseases, Yaroslav the Wise Novgorod State University, 41 Bolshaya St. Petersburg Street, 173003 Veliky Novgorod, Russia
| | - Alexey Polonikov
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia
- Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia
| |
Collapse
|
17
|
Nagai M, Kaji H. Thermal Effect on Heat Shock Protein 70 Family to Prevent Atherosclerotic Cardiovascular Disease. Biomolecules 2023; 13:biom13050867. [PMID: 37238736 DOI: 10.3390/biom13050867] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/11/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Heat shock protein 70 (HSP70) is a chaperone protein induced by various stresses on cells and is involved in various disease mechanisms. In recent years, the expression of HSP70 in skeletal muscle has attracted attention for its use as a prevention of atherosclerotic cardiovascular disease (ASCVD) and as a disease marker. We have previously reported the effect of thermal stimulation targeted to skeletal muscles and skeletal muscle-derived cells. In this article, we reported review articles including our research results. HSP70 contributes to the improvement of insulin resistance as well as chronic inflammation which are underlying pathologies of type 2 diabetes, obesity, and atherosclerosis. Thus, induction of HSP70 expression by external stimulation such as heat and exercise may be useful for ASCVD prevention. It may be possible to induce HSP70 by thermal stimulus in those who have difficulty in exercise because of obesity or locomotive syndrome. It requires further investigation to determine whether monitoring serum HSP70 concentration is useful for ASCVD prevention.
Collapse
Affiliation(s)
- Masayo Nagai
- Central Research Facility, Aino University, Osaka 567-0012, Japan
| | - Hidesuke Kaji
- Division of Physiology and Metabolism, University of Hyogo, Kobe 651-2197, Japan
| |
Collapse
|
18
|
Alrouji M, Al-Kuraishy HM, Al-Gareeb AI, Alexiou A, Papadakis M, Saad HM, Batiha GES. The potential role of human islet amyloid polypeptide in type 2 diabetes mellitus and Alzheimer's diseases. Diabetol Metab Syndr 2023; 15:101. [PMID: 37173803 PMCID: PMC10182652 DOI: 10.1186/s13098-023-01082-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023] Open
Abstract
Human Islet amyloid polypeptide (hIAPP) from pancreatic β cells in the islet of Langerhans has different physiological functions including inhibiting the release of insulin and glucagon. Type 2 diabetes mellitus (T2DM) is an endocrine disorder due to relative insulin insufficiency and insulin resistance (IR) is associated with increased circulating hIAPP. Remarkably, hIAPP has structural similarity with amyloid beta (Aβ) and can engage in the pathogenesis of T2DM and Alzheimer's disease (AD). Therefore, the present review aimed to elucidate how hIAPP acts as a link between T2DM and AD. IR, aging and low β cell mass increase expression of hIAPP which binds cell membrane leading to the aberrant release of Ca2+ and activation of the proteolytic enzymes leading to a series of events causing loss of β cells. Peripheral hIAPP plays a major role in the pathogenesis of AD, and high circulating hIAPP level increase AD risk in T2DM patients. However, there is no hard evidence for the role of brain-derived hIAPP in the pathogenesis of AD. Nevertheless, oxidative stress, mitochondrial dysfunction, chaperon-mediated autophagy, heparan sulfate proteoglycan (HSPG), immune response, and zinc homeostasis in T2DM could be the possible mechanisms for the induction of the aggregation of hIAPP which increase AD risk. In conclusion, increasing hIAPP circulating levels in T2DM patients predispose them to the development and progression of AD. Dipeptidyl peptidase 4 (DPP4) inhibitors and glucagon-like peptide-1 (GLP-1) agonists attenuate AD in T2DM by inhibiting expression and deposition of hIAP.
Collapse
Affiliation(s)
- Mohammed Alrouji
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra, 11961 Saudi Arabia
| | - Hayder M. Al-Kuraishy
- Department of clinical pharmacology and therapeutic medicine, college of medicine, ALmustansiriyiah University, M.B.Ch.B, FRCP, Baghdad, Box 14132, Iraq
| | - Ali I. Al-Gareeb
- Department of clinical pharmacology and therapeutic medicine, college of medicine, ALmustansiriyiah University, M.B.Ch.B, FRCP, Baghdad, Box 14132, Iraq
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770 Australia
- AFNP Med, Wien, 1030 Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, Heusnerstrasse 40, 42283 Wuppertal, Germany
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matrouh, 51744 Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511 AlBeheira Egypt
| |
Collapse
|
19
|
Goh J, Wong E, Soh J, Maier AB, Kennedy BK. Targeting the molecular & cellular pillars of human aging with exercise. FEBS J 2023; 290:649-668. [PMID: 34968001 DOI: 10.1111/febs.16337] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 10/29/2021] [Accepted: 12/29/2021] [Indexed: 02/04/2023]
Abstract
Biological aging is the main driver of age-associated chronic diseases. In 2014, the United States National Institute of Aging (NIA) sponsored a meeting between several investigators in the field of aging biology, who identified seven biological pillars of aging and a consensus review, "Geroscience: Linking Aging to Chronic Disease," was published. The pillars of aging demonstrated the conservation of aging pathways in diverse model organisms and thus represent a useful framework with which to study human aging. In this present review, we revisit the seven pillars of aging from the perspective of exercise and discuss how regular physical exercise can modulate these pillars to stave off age-related chronic diseases and maintain functional capacity.
Collapse
Affiliation(s)
- Jorming Goh
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore.,Centre for Healthy Longevity, National University Health System (NUHS), Singapore
| | - Esther Wong
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore.,Centre for Healthy Longevity, National University Health System (NUHS), Singapore
| | - Janjira Soh
- Centre for Healthy Longevity, National University Health System (NUHS), Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
| | - Andrea Britta Maier
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore.,Centre for Healthy Longevity, National University Health System (NUHS), Singapore.,Department of Medicine, National University of Singapore, Singapore.,Department of Medicine and Aged Care, @AgeMelbourne, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia.,Department of Human Movement Sciences, @AgeAmsterdam, Amsterdam Movement Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Brian Keith Kennedy
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore.,Centre for Healthy Longevity, National University Health System (NUHS), Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
| |
Collapse
|
20
|
Niinuma SA, Lubbad L, Lubbad W, Moin ASM, Butler AE. The Role of Heat Shock Proteins in the Pathogenesis of Polycystic Ovarian Syndrome: A Review of the Literature. Int J Mol Sci 2023; 24:ijms24031838. [PMID: 36768170 PMCID: PMC9915177 DOI: 10.3390/ijms24031838] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/19/2023] Open
Abstract
Polycystic ovarian syndrome (PCOS) is the most common endocrine disorder in women of reproductive age and post-menopausal women. PCOS is a multifactorial heterogeneous disorder associated with a variety of etiologies, outcomes, and clinical manifestations. However, the pathophysiology of PCOS is still unclear. Heat shock proteins (HSPs) have recently been investigated for their role in the pathogenesis of PCOS. HSPs are a class of proteins that act as molecular chaperones and maintain cellular proteostasis. More recently, their actions beyond that of molecular chaperones have highlighted their pathogenic role in several diseases. In PCOS, different HSP family members show abnormal expression that affects the proliferation and apoptotic rates of ovarian cells as well as immunological processes. HSP dysregulation in the ovaries of PCOS subjects leads to a proliferation/apoptosis imbalance that mechanistically impacts follicle stage development, resulting in polycystic ovaries. Moreover, HSPs may play a role in the pathogenesis of PCOS-associated conditions. Recent studies on HSP activity during therapeutic interventions for PCOS suggest that modulating HSP activity may lead to novel treatment strategies. In this review, we summarize what is currently known regarding the role of HSPs in the pathogenesis of PCOS and their potential role in the treatment of PCOS, and we outline areas for future research.
Collapse
Affiliation(s)
- Sara Anjum Niinuma
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| | - Laila Lubbad
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| | - Walaa Lubbad
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| | - Abu Saleh Md Moin
- Research Department, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| | - Alexandra E. Butler
- Research Department, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
- Correspondence: or ; Tel.: +973-66760313
| |
Collapse
|
21
|
AlSabagh AT, Rao MS, Renno WM. The impact of heat therapy on neuromuscular function and muscle atrophy in diabetic rats. Front Physiol 2023; 13:1039588. [PMID: 36685197 PMCID: PMC9849254 DOI: 10.3389/fphys.2022.1039588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction: Diabetes Mellitus (DM) is the most common metabolic disease worldwide and is associated with many systemic complications. Muscle atrophy is one of the significant complications in DM patients, making routine tasks laborious as atrophy continues. It is known that heat stress stimulates heat shock proteins and other proteins that maintain muscle mass; however, it is not thoroughly studied in diabetic conditions. This study addressed whether heat therapy can attenuate muscle atrophy in STZ-induced diabetic rats and explored its mechanism of action on specific muscle proteins. Methods: Male Sprague Dawley rats were randomly divided into short-term (3 weeks) and long-term (6 weeks) experiments. In each experiment rats were divided into control, heat therapy, diabetic and diabetic + heat therapy groups. Rats in heat therapy groups were exposed to heat therapy for 30 min daily for three or six weeks in a temperature-controlled (42°C) chamber. Results: The attenuation of neuromuscular functions assessed by Rotarod, Kondziella's inverted screen, and extensor postural thrust tests showed that diabetic rats exposed to heat therapy performed significantly better than diabetic controls. Muscle cross sectional area data established that heat therapy reduced muscle atrophy by 34.3% within 3 weeks and 44.1% within 6 weeks in the diabetic groups. Further, heat therapy significantly decreased muscle atrophy markers (CD68, KLF, and MAFbx) and significantly elevated muscle hypertrophy markers (AKT, mTOR, and HSP70). Conclusions: This study shows the relevance and clinical significance of utilizing heat therapy as a viable treatment to attenuate muscle atrophy in diabetic patients.
Collapse
|
22
|
Increased eHSP70-to-iHSP70 ratio disrupts vascular responses to calcium and activates the TLR4-MD2 complex in type 1 diabetes. Life Sci 2022; 310:121079. [DOI: 10.1016/j.lfs.2022.121079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/24/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022]
|
23
|
Al-Zuhaeri AA, Al-Shakour AA, Ali Mansour A. Serum Level of Heat Shock Protein 70 in Patients with Type 2 Diabetes Mellitus in Basrah, Iraq. ARCHIVES OF RAZI INSTITUTE 2022; 77:1837-1844. [PMID: 37123136 PMCID: PMC10133620 DOI: 10.22092/ari.2022.358129.2155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/23/2022] [Indexed: 05/02/2023]
Abstract
Diabetes mellitus is a chronic metabolic disease with an increasing prevalence, caused by a defect in insulin production, insulin action, or both, and can increase the risk for the development of microvascular as well as macrovascular complications. Heat shock protein70 is considered a family of a larger group of proteins known as heat shock proteins, which their expression is induced when the cells are subjected to environmental stress. They are believed to keep the native folding of proteins in cells under stressful conditions and their therapeutic role. Therefore, this study aimed to investigate the serum level of HSP70 in patients with type 2 diabetes mellitus (T2DM) to assess if there is an association of HSP70 with T2DM and to evaluate the effect of age and duration of disease on the serum level of HSP70. Ninety-one patients with T2DM were recruited, and 85 individuals with the same age range and sex as healthy controls. Serum HSP70, fasting blood sugar, and HbA1c were measured. The results revealed that the level of HSP70 was significantly higher in the diabetic group compared to the control group (P value<0.05). The level of HSP70 showed a significant positive correlation with age and duration of disease as well as with fasting blood sugar and HbA1c. The study suggested that HSP70 may have the potential to be used as an indicator of metabolic derangement and a prognostic biomarker in diabetes.
Collapse
Affiliation(s)
- A A Al-Zuhaeri
- Department of Biochemistry, Basrah Medical College, Basrah, Iraq
| | - A A Al-Shakour
- Department of Biochemistry, Basrah Medical College, Basrah, Iraq
| | - A Ali Mansour
- Department of Medicine, Basrah Medical College, Basrah Iraq
| |
Collapse
|
24
|
Borges Russo MK, Kowalewski LS, da Natividade GR, de Lemos Muller CH, Schroeder HT, Bock PM, Ayres LR, Cardoso BU, Zanotto C, Schein JT, Rech TH, Crispim D, Canani LH, Friedman R, Leitão CB, Gerchman F, Krause M. Elevated Extracellular HSP72 and Blunted Heat Shock Response in Severe COVID-19 Patients. Biomolecules 2022; 12:biom12101374. [PMID: 36291584 PMCID: PMC9599720 DOI: 10.3390/biom12101374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Aims: We hypothesized that critically ill patients with SARS-CoV-2 infection and insulin resistance would present a reduced Heat Shock Response (HSR), which is a pathway involved in proteostasis and anti-inflammation, subsequently leading to worse outcomes and higher inflammation. In this work we aimed: (i) to measure the concentration of extracellular HSP72 (eHSP72) in patients with severe COVID-19 and in comparison with noninfected patients; (ii) to compare the HSR between critically ill patients with COVID-19 (with and without diabetes); and (iii) to compare the HSR in these patients with noninfected individuals. Methods: Sixty critically ill adults with acute respiratory failure with SARS-CoV-2, with or without diabetes, were selected. Noninfected subjects were included for comparison (healthy, n = 19 and patients with diabetes, n = 22). Blood samples were collected to measure metabolism (glucose and HbA1c); oxidative stress (lypoperoxidation and carbonyls); cytokine profile (IL-10 and TNF); eHSP72; and the HSR (in vitro). Results: Patients with severe COVID-19 presented higher plasma eHSP72 compared with healthy individuals and noninfected patients with diabetes. Despite the high level of plasma cytokines, no differences were found between critically ill patients with COVID-19 with or without diabetes. Critically ill patients, when compared to noninfected, presented a blunted HSR. Oxidative stress markers followed the same pattern. No differences in the HSR (extracellular/intracellular level) were found between critically ill patients, with or without diabetes. Conclusions: We demonstrated that patients with severe COVID-19 have elevated plasma eHSP72 and that their HSR is blunted, regardless of the presence of diabetes. These results might explain the uncontrolled inflammation and also provide insights on the increased risk in developing type 2 diabetes after SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Mariana Kras Borges Russo
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX) and Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, RS, Brazil
| | - Lucas Stahlhöfer Kowalewski
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX) and Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, RS, Brazil
| | - Gabriella Richter da Natividade
- Endocrine and Metabolic Unit, Hospital de Clinicas de Porto Alegre, Post-Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, RS, Brazil
- Post-Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, RS, Brazil
| | - Carlos Henrique de Lemos Muller
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX) and Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, RS, Brazil
| | - Helena Trevisan Schroeder
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX) and Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, RS, Brazil
| | - Patrícia Martins Bock
- Faculdades Integradas de Taquara, Taquara 95612-150, RS, Brazil
- Department of Pharmacology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, RS, Brazil
| | - Layane Ramos Ayres
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX) and Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, RS, Brazil
| | - Bernardo Urbano Cardoso
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX) and Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, RS, Brazil
| | - Caroline Zanotto
- Endocrine and Metabolic Unit, Hospital de Clinicas de Porto Alegre, Post-Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, RS, Brazil
- Post-Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, RS, Brazil
| | - Julia Tsao Schein
- Endocrine and Metabolic Unit, Hospital de Clinicas de Porto Alegre, Post-Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, RS, Brazil
| | - Tatiana Helena Rech
- Intensive Care Unit, Hospital de Clinicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
| | - Daisy Crispim
- Endocrine and Metabolic Unit, Hospital de Clinicas de Porto Alegre, Post-Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, RS, Brazil
- Post-Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, RS, Brazil
| | - Luis Henrique Canani
- Endocrine and Metabolic Unit, Hospital de Clinicas de Porto Alegre, Post-Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, RS, Brazil
- Post-Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, RS, Brazil
| | - Rogério Friedman
- Endocrine and Metabolic Unit, Hospital de Clinicas de Porto Alegre, Post-Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, RS, Brazil
- Post-Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, RS, Brazil
| | - Cristiane Bauermann Leitão
- Endocrine and Metabolic Unit, Hospital de Clinicas de Porto Alegre, Post-Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, RS, Brazil
- Post-Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, RS, Brazil
| | - Fernando Gerchman
- Endocrine and Metabolic Unit, Hospital de Clinicas de Porto Alegre, Post-Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, RS, Brazil
- Post-Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, RS, Brazil
| | - Mauricio Krause
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX) and Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, RS, Brazil
- Correspondence: ; Tel.: +55-(51)-33082065
| |
Collapse
|
25
|
Javid H, Hashemian P, Yazdani S, Sharbaf Mashhad A, Karimi-Shahri M. The role of heat shock proteins in metastatic colorectal cancer: A review. J Cell Biochem 2022; 123:1704-1735. [PMID: 36063530 DOI: 10.1002/jcb.30326] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 01/18/2023]
Abstract
Heat shock proteins (HSPs) are a large molecular chaperone family classified by their molecular weights, including HSP27, HSP40, HSP60, HSP70, HSP90, and HSP110. HSPs are likely to have antiapoptotic properties and participate actively in various processes such as tumor cell proliferation, invasion, metastases, and death. In this review, we discuss comprehensively the functions of HSPs associated with the progression of colorectal cancer (CRC) and metastasis and resistance to cancer therapy. Taken together, HSPs have numerous clinical applications as biomarkers for cancer diagnosis and prognosis and potential therapeutic targets for CRC and its related metastases.
Collapse
Affiliation(s)
- Hossein Javid
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
| | - Pedram Hashemian
- Jahad Daneshgahi Research Committee, Jahad Daneshgahi Institute, Mashhad, Iran
| | - Shaghayegh Yazdani
- Department of Medical Laboratory Sciences, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Laboratory Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | - Alireza Sharbaf Mashhad
- Department of Medical Laboratory Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Karimi-Shahri
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pathology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
26
|
Seibert P, Anklam CFV, Costa-Beber LC, Sulzbacher LM, Sulzbacher MM, Sangiovo AMB, dos Santos FK, Goettems-Fiorin PB, Heck TG, Frizzo MN, Ludwig MS. Increased eHSP70-to-iHSP70 ratio in prediabetic and diabetic postmenopausal women: a biomarker of cardiometabolic risk. Cell Stress Chaperones 2022; 27:523-534. [PMID: 35767179 PMCID: PMC9485348 DOI: 10.1007/s12192-022-01288-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/01/2022] [Accepted: 06/22/2022] [Indexed: 11/03/2022] Open
Abstract
Decreased estrogen levels in menopause are associated with anthropometric, metabolic, and inflammatory impairments, predisposing women to cardiometabolic risk factors such as diabetes. Menopause and type two diabetes (DM2) are marked by altered heat shock response (HSR), shown by decreased expression of the 70-kDa heat shock protein in the intracellular milieu (iHSP70). While iHSP70 plays an anti-inflammatory role, extracellular HSP70 (eHSP70) may mediate pro-inflammatory pathways and has been associated with insulin resistance in DM2. Considering the roles of these proteins according to localization, the eHSP70-to-iHSP70 ratio (H-index) has been proposed as a biomarker for HSR. We, therefore, evaluated whether this biomarker is associated with glycemic and inflammatory status in postmenopausal women. In this transversal study, 36 postmenopausal women were grouped according to fasting glycemia status as either the control group (normoglycemic, ≤ 99 mg/dL) or DM2 (prediabetic and diabetic, glycemia ≥ 100 mg/dL). DM2 group showed higher triglyceride/glucose (TyG) index and plasma atherogenic index (PAI), both of which are indicators of cardiometabolic risk. In addition, we found that the eHSP70-to-iHSP70 ratio (plasma/peripheral blood mononuclear cells-PBMC ratio) was higher in the DM2 group, compared with the control group. Furthermore, blood leukocyte and glycemia levels were positively correlated with the eHSP70-to-iHSP70 ratio in women that presented H-index values above 1.0 (a.u.). Taken together, our results highlight the eHSP70-to-iHSP70 ratio as a biomarker of altered HSR in DM2 postmenopausal women.
Collapse
Affiliation(s)
- Priscila Seibert
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Ijuí, RS Brazil
- Research Group in Physiology, Post Graduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), RS, Rua do Comércio, 3000 – Bairro Universitário, Ijuí, 98700-000 Brazil
| | - Carolain Felipin Vincensi Anklam
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Ijuí, RS Brazil
- Research Group in Physiology, Post Graduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), RS, Rua do Comércio, 3000 – Bairro Universitário, Ijuí, 98700-000 Brazil
| | - Lílian Corrêa Costa-Beber
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Ijuí, RS Brazil
- Research Group in Physiology, Post Graduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), RS, Rua do Comércio, 3000 – Bairro Universitário, Ijuí, 98700-000 Brazil
| | - Lucas Machado Sulzbacher
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Ijuí, RS Brazil
- Research Group in Physiology, Post Graduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), RS, Rua do Comércio, 3000 – Bairro Universitário, Ijuí, 98700-000 Brazil
| | - Maicon Machado Sulzbacher
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Ijuí, RS Brazil
- Research Group in Physiology, Post Graduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), RS, Rua do Comércio, 3000 – Bairro Universitário, Ijuí, 98700-000 Brazil
- Post Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, RS Brazil
| | - Angela Maria Blanke Sangiovo
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Ijuí, RS Brazil
- Research Group in Physiology, Post Graduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), RS, Rua do Comércio, 3000 – Bairro Universitário, Ijuí, 98700-000 Brazil
| | - Fernanda Knopp dos Santos
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Ijuí, RS Brazil
| | - Pauline Brendler Goettems-Fiorin
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Ijuí, RS Brazil
- Research Group in Physiology, Post Graduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), RS, Rua do Comércio, 3000 – Bairro Universitário, Ijuí, 98700-000 Brazil
| | - Thiago Gomes Heck
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Ijuí, RS Brazil
- Research Group in Physiology, Post Graduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), RS, Rua do Comércio, 3000 – Bairro Universitário, Ijuí, 98700-000 Brazil
- Post Graduate Program in Mathematical and Computational Modeling (PPGMMC-UNIJUI), Ijuí, RS Brazil
| | - Matias Nunes Frizzo
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Ijuí, RS Brazil
- Research Group in Physiology, Post Graduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), RS, Rua do Comércio, 3000 – Bairro Universitário, Ijuí, 98700-000 Brazil
| | - Mirna Stela Ludwig
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Ijuí, RS Brazil
- Research Group in Physiology, Post Graduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), RS, Rua do Comércio, 3000 – Bairro Universitário, Ijuí, 98700-000 Brazil
| |
Collapse
|
27
|
Badr G, Sayed LH, Omar HEDM, ِAbd Elghaffar SK, Menshawy MM. Bee gomogenat rescues lymphoid organs from degeneration by regulating the crosstalk between apoptosis and autophagy in streptozotocin-induced diabetic mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:68990-69007. [PMID: 35554836 PMCID: PMC9508069 DOI: 10.1007/s11356-022-20457-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
Diabetes mellitus (DM) is a metabolic disorder that causes severe complications in several tissues due to redox imbalances, which in turn cause defective angiogenesis in response to ischemia and activate a number of proinflammatory pathways. Our study aimed to investigate the effect of bee gomogenat (BG) dietary supplementation on the architecture of immune organs in a streptozotocin (STZ)-induced type 1 diabetes (T1D) mouse model. Three animal groups were used: the control non-diabetic, diabetic, and BG-treated diabetic groups. STZ-induced diabetes was associated with increased levels of blood glucose, ROS, and IL-6 and decreased levels of IL-2, IL-7, IL-4, and GSH. Moreover, diabetic mice showed alterations in the expression of autophagy markers (LC3, Beclin-1, and P62) and apoptosis markers (Bcl-2 and Bax) in the thymus, spleen, and lymph nodes. Most importantly, the phosphorylation level of AKT (a promoter of cell survival) was significantly decreased, but the expression levels of MCP-1 and HSP-70 (markers of inflammation) were significantly increased in the spleen and lymph nodes in diabetic mice compared to control animals. Interestingly, oral supplementation with BG restored the levels of blood glucose, ROS, IL-6, IL-2, IL-4, IL-7, and GSH in diabetic mice. Treatment with BG significantly abrogated apoptosis and autophagy in lymphoid organs in diabetic mice by restoring the expression levels of LC3, Beclin-1, P62, Bcl-2, and Bax; decreasing inflammatory signals by downregulating the expression of MCP-1 and HSP-70; and promoting cell survival by enhancing the phosphorylation of AKT. Our data were the first to reveal the therapeutic potential of BG on the architecture of lymphoid organs and enhancing the immune system during T1D.
Collapse
Affiliation(s)
- Gamal Badr
- Zoology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
- Laboratory of Immunology, Zoology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
| | - Leila H Sayed
- Zoology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
- Laboratory of Immunology, Zoology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | | | - Sary Khaleel ِAbd Elghaffar
- Pathology and clinical pathology Department, Faculty of Veterinary Medicine, Assiut University, Assiut, 71516, Egypt
| | - Medhat M Menshawy
- Department of Biology, Misr University of Science and Technology, 6th October City, Egypt
| |
Collapse
|
28
|
Negahdary M, Angnes L. An aptasensing platform for detection of heat shock protein 70 kDa (HSP70) using a modified gold electrode with lady fern-like gold (LFG) nanostructure. Talanta 2022; 246:123511. [DOI: 10.1016/j.talanta.2022.123511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/20/2022] [Accepted: 04/23/2022] [Indexed: 10/18/2022]
|
29
|
Kotowska J, Jówko E, Cieśliński I, Gromisz W, Sadowski J. IL-6 and HSPA1A Gene Polymorphisms May Influence the Levels of the Inflammatory and Oxidative Stress Parameters and Their Response to a Chronic Swimming Training. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19138127. [PMID: 35805787 PMCID: PMC9265512 DOI: 10.3390/ijerph19138127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022]
Abstract
The aim of the study was to evaluate whether the most common polymorphisms in the IL-6 and HSP70 genes affect the circulating heat shock protein 70 (HSP70), as well as inflammatory and prooxidant-antioxidant parameters in healthy men undergoing chronic endurance training. The subjects were randomly assigned to a 12-week swimming training (ST group) or control group (CON). Fasting blood samples were collected pre- and post-study period to assessment: superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities, serum levels of lipid hydroperoxides (LHs), tumor necrosis factor α (TNFα), and HSP70. Subjects were genotyped for IL-6-174G/C, HSPA1A + 190 G/C and HSPA1B + 1538 A/G single nucleotide polymorphisms (SNPs) by real-time PCR. After a 12-week study period, a decrease in TNFα, HSP70, and GPx was observed in the ST group, but not the CON group. IL-6 SNP affected serum TNFα levels (main effect of genotype). Higher TNFα levels (pre- and post-study period) was observed in CC CON than in other IL-6 genotypes of CON and ST groups. However, a post-training decrease in TNFα was observed in both GG and CC IL-6 genotypes of ST group. In turn, only GG IL-6 genotype of the ST group was related to a post-training decrease in HSP70 (main time and genotype interaction). Moreover, pre- and post-training LHs were lower in GG than GC/CC HSPA1A genotypes of the ST group (main genotype effect). In conclusion, polymorphisms within the IL-6 and HSPA1A genes seem to affect baseline levels of some inflammatory parameters and prooxidant-antioxidant status and/or their changes after chronic swimming training. However, the results should be confirmed in a study with a larger sample size, one that includes individuals with sedentary lifestyles.
Collapse
Affiliation(s)
- Jadwiga Kotowska
- Department of Natural Sciences, Faculty of Physical Education and Health in Biała Podlaska, Józef Piłsudski University of Physical Education in Warsaw, 21-500 Biała Podlaska, Poland;
| | - Ewa Jówko
- Department of Natural Sciences, Faculty of Physical Education and Health in Biała Podlaska, Józef Piłsudski University of Physical Education in Warsaw, 21-500 Biała Podlaska, Poland;
- Correspondence:
| | - Igor Cieśliński
- Department of Sports Sciences, Faculty of Physical Education and Health in Biała Podlaska, Józef Piłsudski University of Physical Education in Warsaw, 21-500 Biała Podlaska, Poland; (I.C.); (W.G.); (J.S.)
| | - Wilhelm Gromisz
- Department of Sports Sciences, Faculty of Physical Education and Health in Biała Podlaska, Józef Piłsudski University of Physical Education in Warsaw, 21-500 Biała Podlaska, Poland; (I.C.); (W.G.); (J.S.)
| | - Jerzy Sadowski
- Department of Sports Sciences, Faculty of Physical Education and Health in Biała Podlaska, Józef Piłsudski University of Physical Education in Warsaw, 21-500 Biała Podlaska, Poland; (I.C.); (W.G.); (J.S.)
| |
Collapse
|
30
|
Moosaie F, Rabizadeh S, Fallahzadeh A, Sheikhy A, Meysamie A, Dehghani Firouzabadi F, Nakhjavani M, Esteghamati A. Effects of Pentoxifylline on Serum Markers of Diabetic Nephropathy in Type 2 Diabetes. Diabetes Ther 2022; 13:1023-1036. [PMID: 35380410 PMCID: PMC9076784 DOI: 10.1007/s13300-022-01250-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/08/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE To investigate the effects of pentoxifylline (PTX) in combination with losartan compared to the high dose of losartan alone on serum markers of diabetic nephropathy such as HSP70, copeptin, CRP, and TNFα in patients with type 2 diabetes and nephropathy. METHODS A single-center, randomized, double-blind, open-label clinical trial was conducted. Sixty-two patients were eligible and allocated to "PTX + losartan" and "high-dose losartan" arms of the trial using software for random number generation. The first arm received 400 mg PTX two times a day (BD) plus 50 mg losartan daily, while the second arm received 50 mg losartan two times a day (BD) for 12 weeks. Comparison of the biomarkers' levels before and after treatment was done using paired sample t test variance. ANCOVA was applied to evaluate the comparative efficacy of the two interventions. The effect size was calculated and reported for each biomarker. RESULTS Urine albumin excretion (UAE), hs-CRP, and HbA1c significantly decreased in both trial arms compared to the baseline measures. Copeptin and TNFα showed significant differences (after vs before) only in the losartan group (p = 0.017 and p = 0.043, respectively). The losartan arm was more successful in reducing TNFα, copeptin, HSP70, systolic blood pressure (SBP), and diastolic blood pressure (DBP) values (p = 0.045, effect size = 7.3%; p = 0.018, effect size 10.1%; p = 0.046, effect size 4.7%, p = 0.001, effect size 23%; p = 0.012, effect size 10.2%, respectively) and the PTX arm was associated with a superior reduction of UAE and hs-CRP levels (p = 0.018, effect size 9.1%; p = 0.028, effect size 9.2%, respectively). CONCLUSION Add-on PTX to losartan may have more effective anti-inflammatory and anti-albuminuric roles and therefore may be more applicable in the management of diabetic nephropathy compared with high-dose losartan alone. TRAIL REGISTRATION Trial number IRCT 20121104011356N10.
Collapse
Affiliation(s)
- Fatemeh Moosaie
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | - Soghra Rabizadeh
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | - Aida Fallahzadeh
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | - Ali Sheikhy
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | - Alipasha Meysamie
- Department of Community Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Dehghani Firouzabadi
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | - Manouchehr Nakhjavani
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | - Alireza Esteghamati
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran.
| |
Collapse
|
31
|
Sevcuka A, White K, Terry C. Factors That Contribute to hIAPP Amyloidosis in Type 2 Diabetes Mellitus. Life (Basel) 2022; 12:life12040583. [PMID: 35455074 PMCID: PMC9025880 DOI: 10.3390/life12040583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/01/2022] [Accepted: 04/12/2022] [Indexed: 12/24/2022] Open
Abstract
Cases of Type 2 Diabetes Mellitus (T2DM) are increasing at an alarming rate due to the rise in obesity, sedentary lifestyles, glucose-rich diets and other factors. Numerous studies have increasingly illustrated the pivotal role that human islet amyloid polypeptide (hIAPP) plays in the pathology of T2DM through damage and subsequent loss of pancreatic β-cell mass. HIAPP can misfold and form amyloid fibrils which are preceded by pre-fibrillar oligomers and monomers, all of which have been linked, to a certain extent, to β-cell cytotoxicity through a range of proposed mechanisms. This review provides an up-to-date summary of recent progress in the field, highlighting factors that contribute to hIAPP misfolding and aggregation such as hIAPP protein concentration, cell stress, molecular chaperones, the immune system response and cross-seeding with other amyloidogenic proteins. Understanding the structure of hIAPP and how these factors affect amyloid formation will help us better understand how hIAPP misfolds and aggregates and, importantly, help identify potential therapeutic targets for inhibiting amyloidosis so alternate and more effective treatments for T2DM can be developed.
Collapse
|
32
|
Hirsch GE, Heck TG. Inflammation, oxidative stress and altered heat shock response in type 2 diabetes: the basis for new pharmacological and non-pharmacological interventions. Arch Physiol Biochem 2022; 128:411-425. [PMID: 31746233 DOI: 10.1080/13813455.2019.1687522] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Type 2 diabetes mellitus (DM2) is a chronic disease characterised by variable degrees of insulin resistance and impaired insulin secretion. Besides, several pieces of evidence have shown that chronic inflammation, oxidative stress, and 70 kDa heat shock proteins (HSP70) are strongly involved in DM2 and its complications, and various pharmacological and non-pharmacological treatment alternatives act in these processes/molecules to modulate them and ameliorate the disease. Besides, uncontrolled hyperglycaemia is related to several complications as diabetic retinopathy, neuropathy and hepatic, renal and cardiac complications. In this review, we address discuss the involvement of different inflammatory and pro-oxidant pathways related to DM2, and we described molecular targets modulated by therapeutics currently available to treat DM2.
Collapse
Affiliation(s)
- Gabriela Elisa Hirsch
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUÍ), Rua do Comércio, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Regional University of Northwestern region of the state of Rio Grande do Sul (UNIJUÍ), Rua do Comércio, Brazil
| | - Thiago Gomes Heck
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUÍ), Rua do Comércio, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Regional University of Northwestern region of the state of Rio Grande do Sul (UNIJUÍ), Rua do Comércio, Brazil
| |
Collapse
|
33
|
de Oliveira AA, Mendoza VO, Rastogi S, Nunes KP. New insights into the role and therapeutic potential of HSP70 in diabetes. Pharmacol Res 2022; 178:106173. [PMID: 35278625 DOI: 10.1016/j.phrs.2022.106173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 10/18/2022]
Abstract
Emerging evidence indicates that HSP70 represents a key mechanism in the pathophysiology of β-cell dysfunction, insulin resistance, and various diabetic complications, including micro- and macro-vascular alterations, as well as impaired hemostasis. Hyperglycemia, a hallmark of both types of diabetes, increases the circulating levels of HSP70 (eHSP70), but there is still divergence about whether diabetes up- or down-regulates the intracellular fraction of this protein (iHSP70). Here, we consider that iHSP70 levels reduce in diabetic arterial structures and that the vascular system is in direct contact with all other systems in the body suggesting that a systemic response might also be happening for iHSP70, which is characterized by decreased levels of HSP70 in the vasculature. Furthermore, although many pathways have been proposed to explain HSP70's functions in diabetes, and organs/tissues/cells-specific variations occur, the membrane-bound receptor of the innate immune system, Toll-like receptor 4, and its downstream signal transduction pathways appear to be a constant, not only when we explore the actions of eHSP70, but also when we assess the contributions of iHSP70. In this review, we focus on discussing the multiple roles of HSP70 across organs/tissues/cells affected by hyperglycemia to further explore the possibility of targeting this protein with pharmacological and non-pharmacological approaches in the context of diabetes.
Collapse
Affiliation(s)
- Amanda Almeida de Oliveira
- Laboratory of Vascular Biology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, United States
| | - Valentina Ochoa Mendoza
- Laboratory of Vascular Biology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, United States
| | - Swasti Rastogi
- Laboratory of Vascular Biology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, United States
| | - Kenia Pedrosa Nunes
- Laboratory of Vascular Biology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, United States.
| |
Collapse
|
34
|
HSP70 functional gene polymorphism and haplotype as a genetic factor for type 2 diabetes mellitus. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Costa-Beber LC, Heck TG, Fiorin PBG, Ludwig MS. HSP70 as a biomarker of the thin threshold between benefit and injury due to physical exercise when exposed to air pollution. Cell Stress Chaperones 2021; 26:889-915. [PMID: 34677749 PMCID: PMC8578518 DOI: 10.1007/s12192-021-01241-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 12/15/2022] Open
Abstract
Physical exercise has acute and chronic effects on inflammatory balance, metabolic regulation, and redox status. Exercise-induced adaptations are mediated by enhanced 70-kDa heat shock protein (HSP70) levels and an improved heat shock response (HSR). Therefore, exercise could be useful against disease conditions [obesity, diabetes mellitus (DM), and exposure to atmospheric pollutants] marked by an impaired HSR. However, exercise performed by obese or diabetic subjects under pollution conditions might also be dangerous at certain intensities. Intensity correlates with an increase in HSP70 levels during physical exercise until a critical point at which the effort becomes harmful and impairs the HSR. Establishing a unique biomarker able to indicate the exercise intensity on metabolism and cellular fatigue is essential to ensure adequate and safe exercise recommendations for individuals with obesity or DM who require exercise to improve their metabolic status and live in polluted regions. In this review, we examined the available evidence supporting our hypothesis that HSP70 could serve as a biomarker for determining the optimal exercise intensity for subjects with obesity or diabetes when exposed to air pollution and establishing the fine threshold between anti-inflammatory and pro-inflammatory exercise effects.
Collapse
Affiliation(s)
- Lílian Corrêa Costa-Beber
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health, Department of Life Sciences, Regional University of Northwestern State's Rio Grande do Sul (UNIJUI), Rua do Comercio, 3000 - Bairro Universitario -, Ijuí, RS, 98700-000, Brazil.
- Postgraduation Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Ijuí, RS, Brazil.
| | - Thiago Gomes Heck
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health, Department of Life Sciences, Regional University of Northwestern State's Rio Grande do Sul (UNIJUI), Rua do Comercio, 3000 - Bairro Universitario -, Ijuí, RS, 98700-000, Brazil
- Postgraduation Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Ijuí, RS, Brazil
| | - Pauline Brendler Goettems Fiorin
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health, Department of Life Sciences, Regional University of Northwestern State's Rio Grande do Sul (UNIJUI), Rua do Comercio, 3000 - Bairro Universitario -, Ijuí, RS, 98700-000, Brazil
| | - Mirna Stela Ludwig
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health, Department of Life Sciences, Regional University of Northwestern State's Rio Grande do Sul (UNIJUI), Rua do Comercio, 3000 - Bairro Universitario -, Ijuí, RS, 98700-000, Brazil
- Postgraduation Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Ijuí, RS, Brazil
| |
Collapse
|
36
|
Fachim HA, Iqbal Z, Gibson JM, Baricevic-Jones I, Campbell AE, Geary B, Syed AA, Whetton A, Soran H, Donn RP, Heald AH. Relationship between the Plasma Proteome and Changes in Inflammatory Markers after Bariatric Surgery. Cells 2021; 10:cells10102798. [PMID: 34685777 PMCID: PMC8534496 DOI: 10.3390/cells10102798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 11/25/2022] Open
Abstract
Severe obesity is a disease associated with multiple adverse effects on health. Metabolic bariatric surgery (MBS) can have significant effects on multiple body systems and was shown to improve inflammatory markers in previous short-term follow-up studies. We evaluated associations between changes in inflammatory markers (CRP, IL6 and TNFα) and circulating proteins after MBS. Methods: Sequential window acquisition of all theoretical mass spectra (SWATH-MS) proteomics was performed on plasma samples taken at baseline (pre-surgery) and 6 and 12 months after MBS, and concurrent analyses of inflammatory/metabolic parameters were carried out. The change in absolute abundances of those proteins, showing significant change at both 6 and 12 months, was tested for correlation with the absolute and percentage (%) change in inflammatory markers. Results: We found the following results: at 6 months, there was a correlation between %change in IL-6 and fold change in HSPA4 (rho = −0.659; p = 0.038) and in SERPINF1 (rho = 0.714, p = 0.020); at 12 months, there was a positive correlation between %change in IL-6 and fold change in the following proteins—LGALS3BP (rho = 0.700, p = 0.036), HSP90B1 (rho = 0.667; p = 0.05) and ACE (rho = 0.667, p = 0.05). We found significant inverse correlations at 12 months between %change in TNFα and the following proteins: EPHX2 and ACE (for both rho = −0.783, p = 0.013). We also found significant inverse correlations between %change in CRP at 12 months and SHBG (rho = −0.759, p = 0.029), L1CAM (rho = −0.904, p = 0.002) and AMBP (rho = −0.684, p = 0.042). Conclusion: Using SWATH-MS, we identified several proteins that are involved in the inflammatory response whose levels change in patients who achieve remission of T2DM after bariatric surgery in tandem with changes in IL6, TNFα and/or CRP. Future studies are needed to clarify the underlying mechanisms in how MBS decreases low-grade inflammation.
Collapse
Affiliation(s)
- Helene A. Fachim
- The School of Medicine and Manchester Academic Health Sciences Centre, Manchester University, Manchester M13 9PL, UK; (Z.I.); (J.M.G.); (I.B.-J.); (A.E.C.); (B.G.); (A.A.S.); (A.W.); (H.S.); (R.P.D.)
- Salford Royal Foundation Trust, Department of Endocrinology, Diabetes and Metabolism, Salford M6 8HD, UK
- Correspondence: (H.A.F.); (A.H.H.); Tel.: +44-161-206-0108 (A.H.H.)
| | - Zohaib Iqbal
- The School of Medicine and Manchester Academic Health Sciences Centre, Manchester University, Manchester M13 9PL, UK; (Z.I.); (J.M.G.); (I.B.-J.); (A.E.C.); (B.G.); (A.A.S.); (A.W.); (H.S.); (R.P.D.)
- Salford Royal Foundation Trust, Department of Endocrinology, Diabetes and Metabolism, Salford M6 8HD, UK
| | - J. Martin Gibson
- The School of Medicine and Manchester Academic Health Sciences Centre, Manchester University, Manchester M13 9PL, UK; (Z.I.); (J.M.G.); (I.B.-J.); (A.E.C.); (B.G.); (A.A.S.); (A.W.); (H.S.); (R.P.D.)
- Salford Royal Foundation Trust, Department of Endocrinology, Diabetes and Metabolism, Salford M6 8HD, UK
| | - Ivona Baricevic-Jones
- The School of Medicine and Manchester Academic Health Sciences Centre, Manchester University, Manchester M13 9PL, UK; (Z.I.); (J.M.G.); (I.B.-J.); (A.E.C.); (B.G.); (A.A.S.); (A.W.); (H.S.); (R.P.D.)
- Stoller Biomarker Discovery Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Amy E. Campbell
- The School of Medicine and Manchester Academic Health Sciences Centre, Manchester University, Manchester M13 9PL, UK; (Z.I.); (J.M.G.); (I.B.-J.); (A.E.C.); (B.G.); (A.A.S.); (A.W.); (H.S.); (R.P.D.)
- Stoller Biomarker Discovery Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Bethany Geary
- The School of Medicine and Manchester Academic Health Sciences Centre, Manchester University, Manchester M13 9PL, UK; (Z.I.); (J.M.G.); (I.B.-J.); (A.E.C.); (B.G.); (A.A.S.); (A.W.); (H.S.); (R.P.D.)
- Stoller Biomarker Discovery Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Akheel A. Syed
- The School of Medicine and Manchester Academic Health Sciences Centre, Manchester University, Manchester M13 9PL, UK; (Z.I.); (J.M.G.); (I.B.-J.); (A.E.C.); (B.G.); (A.A.S.); (A.W.); (H.S.); (R.P.D.)
- Salford Royal Foundation Trust, Department of Endocrinology, Diabetes and Metabolism, Salford M6 8HD, UK
| | - Antony Whetton
- The School of Medicine and Manchester Academic Health Sciences Centre, Manchester University, Manchester M13 9PL, UK; (Z.I.); (J.M.G.); (I.B.-J.); (A.E.C.); (B.G.); (A.A.S.); (A.W.); (H.S.); (R.P.D.)
- Stoller Biomarker Discovery Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
- Manchester National Institute for Health Research Biomedical Research Centre, Manchester M13 9WL, UK
| | - Handrean Soran
- The School of Medicine and Manchester Academic Health Sciences Centre, Manchester University, Manchester M13 9PL, UK; (Z.I.); (J.M.G.); (I.B.-J.); (A.E.C.); (B.G.); (A.A.S.); (A.W.); (H.S.); (R.P.D.)
| | - Rachelle P. Donn
- The School of Medicine and Manchester Academic Health Sciences Centre, Manchester University, Manchester M13 9PL, UK; (Z.I.); (J.M.G.); (I.B.-J.); (A.E.C.); (B.G.); (A.A.S.); (A.W.); (H.S.); (R.P.D.)
| | - Adrian H. Heald
- The School of Medicine and Manchester Academic Health Sciences Centre, Manchester University, Manchester M13 9PL, UK; (Z.I.); (J.M.G.); (I.B.-J.); (A.E.C.); (B.G.); (A.A.S.); (A.W.); (H.S.); (R.P.D.)
- Salford Royal Foundation Trust, Department of Endocrinology, Diabetes and Metabolism, Salford M6 8HD, UK
- Correspondence: (H.A.F.); (A.H.H.); Tel.: +44-161-206-0108 (A.H.H.)
| |
Collapse
|
37
|
Xue T, Zhang X, Xing Y, Liu S, Zhang L, Wang X, Yu M. Advances About Immunoinflammatory Pathogenesis and Treatment in Diabetic Peripheral Neuropathy. Front Pharmacol 2021; 12:748193. [PMID: 34671261 PMCID: PMC8520901 DOI: 10.3389/fphar.2021.748193] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/20/2021] [Indexed: 12/13/2022] Open
Abstract
Most diabetic patients develop diabetic peripheral neuropathy (DPN). DPN is related to the increase of inflammatory cells in peripheral nerves, abnormal cytokine expression, oxidative stress, ischemia ,and pro-inflammatory changes in bone marrow. We summarized the progress of immune-inflammatory mechanism and treatment of DPN in recent years. Immune inflammatory mechanisms include TNF-α, HSPs, PARP, other inflammatory factors, and the effect of immune cells on DPN. Treatment includes tricyclic antidepressants and other drug therapy, immune and molecular therapy, and non-drug therapy such as exercise therapy, electrotherapy, acupuncture, and moxibustion. The pathogenesis of DPN is complex. In addition to strictly controlling blood glucose, its treatment should also start from other ways, explore more effective and specific treatment schemes for various causes of DPN, and find new targets for treatment will be the direction of developing DPN therapeutic drugs in the future.
Collapse
Affiliation(s)
- Tianyu Xue
- Department of Neurology, The Third People’s Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xin Zhang
- Department of Neurology, The Third People’s Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yiwen Xing
- Department of Neurology, The Third People’s Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shuhan Liu
- Department of Neurology, The Third People’s Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Lijun Zhang
- Department of Ophthalmology, The Third People’s Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xun Wang
- Department of Neurosurgery, The Third People’s Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Min Yu
- Department of Neurology, The Third People’s Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
38
|
Paiva WS, Queiroz MF, Araujo Sabry D, Santiago ALCMA, Sassaki GL, Batista ACL, Rocha HAO. Preparation, Structural Characterization, and Property Investigation of Gallic Acid-Grafted Fungal Chitosan Conjugate. J Fungi (Basel) 2021; 7:812. [PMID: 34682234 PMCID: PMC8540519 DOI: 10.3390/jof7100812] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress is the cause of numerous diseases in humans; therefore, there has been a continuous search for novel antioxidant molecules. Fungal chitosan is an attractive molecule that has several applications (antifungal, antibacterial, anticancer and antiparasitic action) owing to its unique characteristics; however, it exhibits low antioxidant activity. The aim of this study was to obtain fungal chitosan (Chit-F) from the fungus Rhizopus arrhizus and synthesize its derivative, fungal chitosan-gallic acid (Chit-FGal), as a novel antioxidant chitosan derivative for biomedical use. A low molecular weight Chi-F (~3.0 kDa) with a degree of deacetylation of 86% was obtained from this fungus. Chit-FGal (3.0 kDa) was synthesized by an efficient free radical-mediated method using hydrogen peroxide (H2O2) and ascorbic acid. Both Chit-F and Chit-FGal showed similar copper chelating activities; however, Chit-FGal was more efficient as an antioxidant, exhibiting twice the total antioxidant capacity than Chi-F (p < 0.05). Furthermore, H2O2 (0.06 M) promoted a 50% decrease in the viabilities of the 3T3 fibroblast cells. However, this effect was abolished in the presence of Chit-FGal (0.05-0.25 mg/mL), indicating that Chit-FGal protected the cells from oxidative damage. These results suggest that Chit-FGal may be a promising agent to combat oxidative stress.
Collapse
Affiliation(s)
- Weslley Souza Paiva
- Postgraduate Programe in Biotechnology (RENORBIO), Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| | - Moacir Fernandes Queiroz
- Biomedicine Departament, Medical Sciences College, Potiguar University (UNP), Natal 59056-000, RN, Brazil;
| | - Diego Araujo Sabry
- Laboratorio de Biotecnologia de Polímeros Naturais-BIOPOL, Departament of Biochemistry, Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil;
| | | | - Guilherme Lanzi Sassaki
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba 81531-980, PR, Brazil;
| | | | - Hugo Alexandre Oliveira Rocha
- Postgraduate Programe in Biotechnology (RENORBIO), Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
- Laboratorio de Biotecnologia de Polímeros Naturais-BIOPOL, Departament of Biochemistry, Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil;
| |
Collapse
|
39
|
Malik JA, Lone R. Heat shock proteins with an emphasis on HSP 60. Mol Biol Rep 2021; 48:6959-6969. [PMID: 34498161 DOI: 10.1007/s11033-021-06676-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 08/23/2021] [Indexed: 02/08/2023]
Abstract
Heat shock phenomenon is a process by which cells express a set of proteins called heat shock proteins (HSPs) against heat stress. HSPs include several families depending upon the molecular weight of the respective protein. Among the different HSPs, The HSP60 is one of the main components representing the framework of chaperone system. HSP60 plays a myriad number of roles like chaperoning, thermotolerance, apoptosis, cancer, immunology and embryonic development. In this review we discussed briefly the general knowledge and focussed on HSP60 in terms of structure, regulation and function in various physiological and pathological conditions.
Collapse
Affiliation(s)
- Javid Ahmad Malik
- Pharmacology and Toxicology Laboratory, Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Rafiq Lone
- Department of Botany, Central University of Kashmir, Jammu and Kashmir, India.
| |
Collapse
|
40
|
Iqbal Z, Fachim HA, Gibson JM, Baricevic-Jones I, Campbell AE, Geary B, Donn RP, Hamarashid D, Syed A, Whetton AD, Soran H, Heald AH. Changes in the Proteome Profile of People Achieving Remission of Type 2 Diabetes after Bariatric Surgery. J Clin Med 2021; 10:3659. [PMID: 34441954 PMCID: PMC8396849 DOI: 10.3390/jcm10163659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
Bariatric surgery (BS) results in metabolic pathway recalibration. We have identified potential biomarkers in plasma of people achieving type 2 diabetes mellitus (T2DM) remission after BS. Longitudinal analysis was performed on plasma from 10 individuals following Roux-en-Y gastric bypass (n = 7) or sleeve gastrectomy (n = 3). Sequential window acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH-MS) was done on samples taken at 4 months before (baseline) and 6 and 12 months after BS. Four hundred sixty-seven proteins were quantified by SWATH-MS. Principal component analysis resolved samples from distinct time points after selection of key discriminatory proteins: 25 proteins were differentially expressed between baseline and 6 months post-surgery; 39 proteins between baseline and 12 months. Eight proteins (SHBG, TF, PRG4, APOA4, LRG1, HSPA4, EPHX2 and PGLYRP) were significantly different to baseline at both 6 and 12 months post-surgery. The panel of proteins identified as consistently different included peptides related to insulin sensitivity (SHBG increase), systemic inflammation (TF and HSPA4-both decreased) and lipid metabolism (APOA4 decreased). We found significant changes in the proteome for eight proteins at 6- and 12-months post-BS, and several of these are key components in metabolic and inflammatory pathways. These may represent potential biomarkers of remission of T2DM.
Collapse
Affiliation(s)
- Zohaib Iqbal
- The School of Medicine and Manchester Academic Health Sciences Centre, Manchester University, Manchester M13 9PL, UK; (Z.I.); (J.M.G.); (R.P.D.); (H.S.)
- Department of Endocrinology, Diabetes and Metabolism, Salford Royal Foundation Trust, Salford M6 8HD, UK; (D.H.); (A.S.)
| | - Helene A. Fachim
- The School of Medicine and Manchester Academic Health Sciences Centre, Manchester University, Manchester M13 9PL, UK; (Z.I.); (J.M.G.); (R.P.D.); (H.S.)
- Department of Endocrinology, Diabetes and Metabolism, Salford Royal Foundation Trust, Salford M6 8HD, UK; (D.H.); (A.S.)
| | - J. Martin Gibson
- The School of Medicine and Manchester Academic Health Sciences Centre, Manchester University, Manchester M13 9PL, UK; (Z.I.); (J.M.G.); (R.P.D.); (H.S.)
- Department of Endocrinology, Diabetes and Metabolism, Salford Royal Foundation Trust, Salford M6 8HD, UK; (D.H.); (A.S.)
| | - Ivona Baricevic-Jones
- Stoller Biomarker Discovery Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (I.B.-J.); (A.E.C.); (B.G.); (A.D.W.)
| | - Amy E. Campbell
- Stoller Biomarker Discovery Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (I.B.-J.); (A.E.C.); (B.G.); (A.D.W.)
| | - Bethany Geary
- Stoller Biomarker Discovery Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (I.B.-J.); (A.E.C.); (B.G.); (A.D.W.)
| | - Rachelle P. Donn
- The School of Medicine and Manchester Academic Health Sciences Centre, Manchester University, Manchester M13 9PL, UK; (Z.I.); (J.M.G.); (R.P.D.); (H.S.)
| | - Dashne Hamarashid
- Department of Endocrinology, Diabetes and Metabolism, Salford Royal Foundation Trust, Salford M6 8HD, UK; (D.H.); (A.S.)
| | - Akheel Syed
- Department of Endocrinology, Diabetes and Metabolism, Salford Royal Foundation Trust, Salford M6 8HD, UK; (D.H.); (A.S.)
| | - Anthony D. Whetton
- Stoller Biomarker Discovery Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (I.B.-J.); (A.E.C.); (B.G.); (A.D.W.)
- Manchester National Institute for Health Research Biomedical Research Centre, Manchester M13 9WL, UK
| | - Handrean Soran
- The School of Medicine and Manchester Academic Health Sciences Centre, Manchester University, Manchester M13 9PL, UK; (Z.I.); (J.M.G.); (R.P.D.); (H.S.)
| | - Adrian H. Heald
- The School of Medicine and Manchester Academic Health Sciences Centre, Manchester University, Manchester M13 9PL, UK; (Z.I.); (J.M.G.); (R.P.D.); (H.S.)
- Department of Endocrinology, Diabetes and Metabolism, Salford Royal Foundation Trust, Salford M6 8HD, UK; (D.H.); (A.S.)
| |
Collapse
|
41
|
Wachal Z, Szilágyi A, Takács B, Szabó AM, Priksz D, Bombicz M, Szilvássy J, Juhász B, Szilvássy Z, Varga B. Improved Survival and Retinal Function of Aging ZDF Rats in Long-Term, Uncontrolled Diabetes by BGP-15 Treatment. Front Pharmacol 2021; 12:650207. [PMID: 33935754 PMCID: PMC8085539 DOI: 10.3389/fphar.2021.650207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/02/2021] [Indexed: 11/13/2022] Open
Abstract
Retinal complications of diabetes often lead to deterioration or even loss of vision. This hastens discovery of pharmacological agents able to counterbalance diabetic retinopathy. BGP-15, an emerging small molecule agent, was formerly proven by our workgroup to be retinoprotective on nonobese diabetic animals, Goto-Kakizaki rats. In the present study, we aimed to examine its long-term tolerability or incidental side effects on obese-prone Zucker diabetic fatty (ZDF) rats to further increase the rationale for a future human translation. To make terminal visual status comparable with our other investigations, we also carried out electroretinography (ERG) at the end of the experiment. Our study was started on 16-week-old ZDF rats and lasted for 52 weeks, while BGP was administered daily by gavage. During the 12 months of treatment, 100% of BGP-treated animals survived compared to the non-treated ZDF group, where 60% of the animals died, which was a statistically significant difference. Based on ERG results, BGP-15 was able to counterbalance visual deterioration of ZDF rats caused by long-term diabetes. Some moderate but significant changes were seen in OGTT results and some relationship to oxidative stress by the western blot method: BGP-15 was able to increase expression of HSP70 and decrease that of NFkB in eyes of rats. These were in concert with our previous observations of SIRT1 increment and MMP9 decrement in diabetic eyes by BGP. In summary, not only is BGP-15 not harmful in the long run but it is even able to reduce the related mortality and the serious consequences of diabetes. BGP-15 is an excellent candidate for future drug development against diabetic retinopathy.
Collapse
Affiliation(s)
- Zita Wachal
- Department of Pharmacology and Pharmacotherapy, University of Debrecen, Debrecen, Hungary
| | - Anna Szilágyi
- Department of Pharmacology and Pharmacotherapy, University of Debrecen, Debrecen, Hungary
| | - Barbara Takács
- Department of Pharmacology and Pharmacotherapy, University of Debrecen, Debrecen, Hungary
| | - Adrienn Mónika Szabó
- Department of Pharmacology and Pharmacotherapy, University of Debrecen, Debrecen, Hungary
| | - Dániel Priksz
- Department of Pharmacology and Pharmacotherapy, University of Debrecen, Debrecen, Hungary
| | - Mariann Bombicz
- Department of Pharmacology and Pharmacotherapy, University of Debrecen, Debrecen, Hungary
| | - Judit Szilvássy
- Department of Oto-Rhino-Laryngology and Head and Neck Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Béla Juhász
- Department of Pharmacology and Pharmacotherapy, University of Debrecen, Debrecen, Hungary
| | - Zoltán Szilvássy
- Department of Pharmacology and Pharmacotherapy, University of Debrecen, Debrecen, Hungary
| | - Balázs Varga
- Department of Pharmacology and Pharmacotherapy, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
42
|
Atkin AS, Moin ASM, Al-Qaissi A, Sathyapalan T, Atkin SL, Butler AE. Plasma heat shock protein response to euglycemia in type 2 diabetes. BMJ Open Diabetes Res Care 2021; 9:9/1/e002057. [PMID: 33879515 PMCID: PMC8061861 DOI: 10.1136/bmjdrc-2020-002057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/10/2021] [Accepted: 03/28/2021] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Glucose variability is associated with mortality and macrovascular diabetes complications. The mechanisms through which glucose variability mediates tissue damage are not well understood, although cellular oxidative stress is likely involved. As heat shock proteins (HSPs) play a role in the pathogenesis of type 2 diabetes (T2D) complications and are rapidly responsive, we hypothesized that HSP-related proteins (HSPRPs) would differ in diabetes and may respond to glucose normalization. RESEARCH DESIGN AND METHODS A prospective, parallel study in T2D (n=23) and controls (n=23) was undertaken. T2D subjects underwent insulin-induced blood glucose normalization from baseline 7.6±0.4 mmol/L (136.8±7.2 mg/dL) to 4.5±0.07 mmol/L (81±1.2 mg/dL) for 1 hour. Control subjects were maintained at 4.9±0.1 mmol/L (88.2±1.8 mg/dL). Slow Off-rate Modified Aptamer-scan plasma protein measurement determined a panel of HSPRPs. RESULTS At baseline, E3-ubiquitin-protein ligase (carboxyl-terminus of Hsc70 interacting protein (CHIP) or HSPABP2) was lower (p=0.03) and ubiquitin-conjugating enzyme E2G2 higher (p=0.003) in T2D versus controls. Following glucose normalization, DnaJ homolog subfamily B member 1 (DNAJB1 or HSP40) was reduced (p=0.02) in T2D, with HSP beta-1 (HSPB1) and HSP-70-1A (HSP70-1A) (p=0.07 and p=0.09, respectively) also approaching significance relative to T2D baseline levels. CONCLUSIONS Key HSPRPs involved in critical protein interactions, CHIP and UBE2G2, were altered in diabetes at baseline. DNAJB1 fell in response to euglycemia, suggesting that HSPs are reacting to basal stress that could be mitigated by tight glucose control with reduction of glucose variability.
Collapse
Affiliation(s)
- Alexander S Atkin
- Department of Biochemistry, University of Cambridge, Cambridgeshire, UK
| | - Abu Saleh Md Moin
- Diabetes Research Center, Qatar Biomedical Research Institute, Doha, Qatar
| | | | | | - Stephen L Atkin
- Royal College of Surgeons in Ireland and Medical University of Bahrain, Busaiteen, Bahrain
| | - Alexandra E Butler
- Diabetes Research Center, Qatar Biomedical Research Institute, Doha, Qatar
| |
Collapse
|
43
|
Anklam CFV, Lissarassa YPS, dos Santos AB, Costa-Beber LC, Sulzbacher LM, Goettems-Fiorin PB, Heck TG, Frizzo MN, Ludwig MS. Oxidative and Cellular Stress Markers in Postmenopause Women with Diabetes: The Impact of Years of Menopause. J Diabetes Res 2021; 2021:3314871. [PMID: 34568498 PMCID: PMC8460375 DOI: 10.1155/2021/3314871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/28/2021] [Indexed: 02/08/2023] Open
Abstract
Women live approximately one-third of their lives in postmenopause. Among postmenopausal women, type 2 diabetes mellitus (DM2) is one of the most prevalent chronic diseases. These conditions promote alterations in the oxidative, metabolic, and immune-inflammatory profiles marked by higher extracellular 72 kDa-heat shock protein (eHSP72). Here, we investigated whether the time of menopause is associated with oxidative cellular stress marker levels in postmenopausal women with DM2. Sixty-four women were recruited (56.7 ± 12.6 years old) in the pre- (n = 22) and postmenopause (n = 42) period, with (n = 19) or without DM2 (n = 45), and a fasting blood collection was made for the evaluation of metabolic, oxidative, and inflammatory markers. We found that menopause and DM2 influenced metabolic and oxidative parameters and presented synergistic effects on the plasma lipoperoxidation levels. Also, postmenopausal women had the highest eHSP72 concentration levels associated with the years in postmenopause. We conclude that the time of menopause impacts the markers of cellular stress and increases the risk of oxidative stress, mainly when it is associated with DM2.
Collapse
Affiliation(s)
- Carolain Felipin Vincensi Anklam
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Rua do Comércio, 3000 Bairro Universitário Ijuí RS, Brazil 98700-000
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil
| | - Yana Picinin Sandri Lissarassa
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Rua do Comércio, 3000 Bairro Universitário Ijuí RS, Brazil 98700-000
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil
| | - Analú Bender dos Santos
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Rua do Comércio, 3000 Bairro Universitário Ijuí RS, Brazil 98700-000
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil
| | - Lílian Corrêa Costa-Beber
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Rua do Comércio, 3000 Bairro Universitário Ijuí RS, Brazil 98700-000
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil
| | - Lucas Machado Sulzbacher
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Rua do Comércio, 3000 Bairro Universitário Ijuí RS, Brazil 98700-000
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil
| | - Pauline Brendler Goettems-Fiorin
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Rua do Comércio, 3000 Bairro Universitário Ijuí RS, Brazil 98700-000
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil
| | - Thiago Gomes Heck
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Rua do Comércio, 3000 Bairro Universitário Ijuí RS, Brazil 98700-000
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil
- Postgraduate Program in Mathematical and Computational Modeling (PPGMMC-UNIJUÍ), Ijuí, RS, Brazil
| | - Matias Nunes Frizzo
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Rua do Comércio, 3000 Bairro Universitário Ijuí RS, Brazil 98700-000
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil
| | - Mirna Stela Ludwig
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Rua do Comércio, 3000 Bairro Universitário Ijuí RS, Brazil 98700-000
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil
| |
Collapse
|
44
|
Blagonravov ML, Sklifasovskaya AP, Korshunova AY, Azova MM, Kurlaeva AO. Heat Shock Protein HSP60 in Left Ventricular Cardiomyocytes of Hypertensive Rats with and without Insulin-Dependent Diabetes Mellitus. Bull Exp Biol Med 2020; 170:10-14. [PMID: 33219889 DOI: 10.1007/s10517-020-04994-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Indexed: 12/27/2022]
Abstract
In cardiomyocytes, high molecular ATP-dependent HSP70 and HSP90 play an important role in protecting the myocardium from abnormal proteins that appear, in particular, due to activation of oxidative stress. Molecular chaperone HSP60 is of particular importance for cardiomyocytes as it is responsible for assembly of mitochondrial matrix proteins. We studied the peculiarities of expression of HSP60 in left ventricular cardiomyocytes in hypertension, insulin-dependent diabetes mellitus, and their combination. The experiment was performed on 38-week-old male Wistar-Kyoto and SHR (spontaneously hypertensive) rats aged 38-57 weeks. Insulin-dependent diabetes mellitus was modeled by a single parenteral administration of 65 mg/kg streptozotocin. Expression of HSP60 in left ventricular cardiomyocytes was evaluated by immunohistochemical methods. It was found that hypertension, diabetes mellitus, and their combination are associated with a significant decrease in the content of HSP60 in left ventricular cardiomyocytes in comparison with the control. This finding can be considered as a pathogenetic mechanism of myocardial damage induced by hypertension and diabetes mellitus.
Collapse
Affiliation(s)
- M L Blagonravov
- V. A. Frolov Department of General Pathology and Pathological Physiology, Moscow, Russia.
| | - A P Sklifasovskaya
- V. A. Frolov Department of General Pathology and Pathological Physiology, Moscow, Russia
| | - A Yu Korshunova
- V. A. Frolov Department of General Pathology and Pathological Physiology, Moscow, Russia
| | - M M Azova
- Department of Biology and General Genetics, Institute of Medicine, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - A O Kurlaeva
- V. A. Frolov Department of General Pathology and Pathological Physiology, Moscow, Russia
| |
Collapse
|
45
|
Are Heat Shock Proteins an Important Link between Type 2 Diabetes and Alzheimer Disease? Int J Mol Sci 2020; 21:ijms21218204. [PMID: 33147803 PMCID: PMC7662599 DOI: 10.3390/ijms21218204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022] Open
Abstract
Type 2 diabetes (T2D) and Alzheimer’s disease (AD) are growing in prevalence worldwide. The development of T2D increases the risk of AD disease, while AD patients can show glucose imbalance due to an increased insulin resistance. T2D and AD share similar pathological features and underlying mechanisms, including the deposition of amyloidogenic peptides in pancreatic islets (i.e., islet amyloid polypeptide; IAPP) and brain (β-Amyloid; Aβ). Both IAPP and Aβ can undergo misfolding and aggregation and accumulate in the extracellular space of their respective tissues of origin. As a main response to protein misfolding, there is evidence of the role of heat shock proteins (HSPs) in moderating T2D and AD. HSPs play a pivotal role in cell homeostasis by providing cytoprotection during acute and chronic metabolic stresses. In T2D and AD, intracellular HSP (iHSP) levels are reduced, potentially due to the ability of the cell to export HSPs to the extracellular space (eHSP). The increase in eHSPs can contribute to oxidative damage and is associated with various pro-inflammatory pathways in T2D and AD. Here, we review the role of HSP in moderating T2D and AD, as well as propose that these chaperone proteins are an important link in the relationship between T2D and AD.
Collapse
|
46
|
Borçari NR, dos Santos JF, Reigado GR, Freitas BL, Araújo MDS, Nunes VA. Vitamins Modulate the Expression of Antioxidant Genes in Progesterone-Treated Pancreatic β Cells: Perspectives for Gestational Diabetes Management. Int J Endocrinol 2020; 2020:8745120. [PMID: 33014046 PMCID: PMC7512066 DOI: 10.1155/2020/8745120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 11/18/2022] Open
Abstract
Gestational diabetes (GD) is a condition defined as carbohydrate intolerance and hyperglycemia beginning in the second trimester of pregnancy, which overlaps with the progesterone exponential increase. Progesterone has been shown to cause pancreatic β-cell death by a mechanism dependent on the generation of reactive oxygen species and oxidative stress. Herein, we studied the effect of this hormone on the expression of 84 genes related to oxidative stress and oxidant defense in pancreatic RINm5F cell lineage. Cells were incubated with 0.1, 1.0, or 100 μM progesterone for 6 or 24 h, in the presence or absence of the vitamins E and C. Among the investigated genes, five of them had their expression increased, at least 2-fold, in two different concentrations independently of the time of incubation, or at the same concentration at the different time points, including those that encode for stearoyl-CoA desaturase 1 (Scd1), dual oxidase 1 (Duox1), glutathione peroxidase 6 (GPx6), heme oxygenase 1 (Hmox1), and heat shock protein a1a (Hspa1a). Vitamins E and C were able to increase, in progesterone-treated cells, the expression of genes with antioxidant function such as Hmox1, but decreased Scd1 expression, a gene with prooxidant function. At cytoplasmic level, progesterone positively modulated Hmox1 and Hspa1a content. These results suggest that the protein encoded by these genes might protect cells against progesterone induced-oxidative damage, opening perspectives to elucidate the molecular mechanism involved in progesterone action in GD, as well as for the development of antioxidant strategies for the prevention and treatment of this disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Viviane Abreu Nunes
- Department of Biotechnology, University of Sao Paulo (USP), Sao Paulo, Brazil
| |
Collapse
|
47
|
Heidari F, Rabizadeh S, Sadat Salehi S, Akhavan S, Khaloo P, Alemi H, Mirmiranpour H, Esteghamati A, Nakhjavani M. Serum HSP70 level in patients with endometrial cancer with and without diabetes. Gynecol Endocrinol 2020; 36:351-355. [PMID: 31392909 DOI: 10.1080/09513590.2019.1648415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Diabetes mellitus (DM) is associated with an increased risk of endometrial carcinoma (EC). Heat shock proteins have a role in the modulation of both diseases. The aim of this study was to investigate extracellular HSP70 (eHSP70) level alternations in patients with two different types of EC (endometrioid and non-endometrioid) with and without type 2 diabetes. In a case-control study, 88 participants were enrolled in four groups including: 18 EC patients with DM, 19 EC patients without DM, 29 patients with DM, and 22 healthy individuals. Blood samples were taken before surgery in cancer patients. Estradiol, eHSP70, sex hormone-binding globulin (SHBG), FBS, and HbA1c were assessed. Serum HSP70 level was higher in patients with diabetes (52.24 ± 14.2 ng/ml) compared to healthy controls (39.04 ± 6.96) (p < .05). It was lower in EC (26.05 ± 12.28) compared to healthy controls (39.04 ± 6.96) (p < .05). eHSP70 was also lower in endometrioid-type carcinoma (22.57 ± 11) compared to non-endometrioid type (31.55 ± 12.38) (p < .05). Further analysis showed increased levels of eHSP70 in patients having both endometrioid-type carcinoma and diabetes (27.23 ± 11.41) compared to the same patients without DM (17.08 ± 7.78) (p < .05). Presence of diabetes in patients with endometrioid type carcinoma resulted in an increase in eHSP70 approaching the level of eHSP70 in patients with non-endometrioid histology.
Collapse
Affiliation(s)
- Firouzeh Heidari
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Soghra Rabizadeh
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Salome Sadat Salehi
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Setare Akhavan
- Gynecology Ward, Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Pegah Khaloo
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Alemi
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Mirmiranpour
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Esteghamati
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Manouchehr Nakhjavani
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
48
|
de Oliveira AA, Webb RC, Nunes KP. Toll-Like Receptor 4 and Heat-Shock Protein 70: Is it a New Target Pathway for Diabetic Vasculopathies? Curr Drug Targets 2020; 20:51-59. [PMID: 30129410 DOI: 10.2174/1389450119666180821105544] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/09/2018] [Accepted: 08/17/2018] [Indexed: 12/17/2022]
Abstract
Diabetes is one of the most concerning diseases in modern times. Despite considerable advances in therapeutic management, the prevalence of diabetes and its contribution to death and disability continue to be a major health problem. Diabetic vasculopathies are the leading cause of mortality and morbidity in diabetic patients. Its pathophysiology includes oxidative stress, advanced glycation end products, and a low-grade inflammatory state. Lately, actions of the innate immune system via Toll-like receptors (TLRs) have been suggested as a new insight in this field. TLRs are pattern recognition receptors activated by highly conserved structural motifs of exogenous or endogenous ligands. Heat-shock proteins (HSPs), normally known for their ability to protect cells during stressful conditions, when released from injured cells bind to TLR4 and trigger the release of pro-inflammatory cytokines in a MyD88-dependent pathway. This pathway had been investigated in pancreatic beta cells and skeletal muscle, but it has not yet been explored in the vascular system and deserves investigation. In this work, the interplay between TLR4 and HSP70 in the vasculature during diabetes is reviewed and discussed. The current literature and preliminary results from our laboratory led us to hypothesize that hyperglycemia-associated HSP70 plays an important role in the pathophysiology of diabetic vasculopathies via the TLR4 pathway and might be a new target for therapeutic intervention.
Collapse
Affiliation(s)
- Amanda Almeida de Oliveira
- Department of Biological Sciences, College of Sciences, Florida Institute of Technology, Melbourne, FL, United States
| | - R Clinton Webb
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Kenia Pedrosa Nunes
- Department of Biological Sciences, College of Sciences, Florida Institute of Technology, Melbourne, FL, United States
| |
Collapse
|
49
|
Brás IC, Dominguez-Meijide A, Gerhardt E, Koss D, Lázaro DF, Santos PI, Vasili E, Xylaki M, Outeiro TF. Synucleinopathies: Where we are and where we need to go. J Neurochem 2020; 153:433-454. [PMID: 31957016 DOI: 10.1111/jnc.14965] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/24/2022]
Abstract
Synucleinopathies are a group of disorders characterized by the accumulation of inclusions rich in the a-synuclein (aSyn) protein. This group of disorders includes Parkinson's disease, dementia with Lewy bodies (DLB), multiple systems atrophy, and pure autonomic failure (PAF). In addition, genetic alterations (point mutations and multiplications) in the gene encoding for aSyn (SNCA) are associated with familial forms of Parkinson's disease, the most common synucleinopathy. The Synuclein Meetings are a series that has been taking place every 2 years for about 12 years. The Synuclein Meetings bring together leading experts in the field of Synuclein and related human conditions with the goal of discussing and advancing the research. In 2019, the Synuclein meeting took place in Ofir, a city in the outskirts of Porto, Portugal. The meeting, entitled "Synuclein Meeting 2019: Where we are and where we need to go", brought together >300 scientists studying both clinical and molecular aspects of synucleinopathies. The meeting covered a many of the open questions in the field, in a format that prompted open discussions between the participants, and underscored the need for additional research that, hopefully, will lead to future therapies for a group of as of yet incurable disorders. Here, we provide a summary of the topics discussed in each session and highlight what we know, what we do not know, and what progress needs to be made in order to enable the field to continue to advance. We are confident this systematic assessment of where we stand will be useful to steer the field and contribute to filling knowledge gaps that may form the foundations for future therapeutic strategies, which is where we need to go.
Collapse
Affiliation(s)
- Inês Caldeira Brás
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Antonio Dominguez-Meijide
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.,Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, Faculty of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ellen Gerhardt
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - David Koss
- Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Diana F Lázaro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Patrícia I Santos
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Eftychia Vasili
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Mary Xylaki
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.,Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, UK.,Max Planck Institute for Experimental Medicine, Göttingen, Germany
| |
Collapse
|
50
|
Genome-wide association study identifies novel risk variants from RPS6KA1, CADPS, VARS, and DHX58 for fasting plasma glucose in Arab population. Sci Rep 2020; 10:152. [PMID: 31932636 PMCID: PMC6957513 DOI: 10.1038/s41598-019-57072-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 12/20/2019] [Indexed: 12/14/2022] Open
Abstract
Consanguineous populations of the Arabian Peninsula, which has seen an uncontrolled rise in type 2 diabetes incidence, are underrepresented in global studies on diabetes genetics. We performed a genome-wide association study on the quantitative trait of fasting plasma glucose (FPG) in unrelated Arab individuals from Kuwait (discovery-cohort:n = 1,353; replication-cohort:n = 1,196). Genome-wide genotyping in discovery phase was performed for 632,375 markers from Illumina HumanOmniExpress Beadchip; and top-associating markers were replicated using candidate genotyping. Genetic models based on additive and recessive transmission modes were used in statistical tests for associations in discovery phase, replication phase, and meta-analysis that combines data from both the phases. A genome-wide significant association with high FPG was found at rs1002487 (RPS6KA1) (p-discovery = 1.64E-08, p-replication = 3.71E-04, p-combined = 5.72E-11; β-discovery = 8.315; β-replication = 3.442; β-combined = 6.551). Further, three suggestive associations (p-values < 8.2E-06) with high FPG were observed at rs487321 (CADPS), rs707927 (VARS and 2Kb upstream of VWA7), and rs12600570 (DHX58); the first two markers reached genome-wide significance in the combined analysis (p-combined = 1.83E-12 and 3.07E-09, respectively). Significant interactions of diabetes traits (serum triglycerides, FPG, and glycated hemoglobin) with homeostatic model assessment of insulin resistance were identified for genotypes heterozygous or homozygous for the risk allele. Literature reports support the involvement of these gene loci in type 2 diabetes etiology.
Collapse
|