1
|
Kim YS, Park SI, Kim JJ, Boyd JS, Beld J, Taton A, Lee KI, Kim IS, Golden JW, Yoon HS. Expression of Heterologous OsDHAR Gene Improves Glutathione (GSH)-Dependent Antioxidant System and Maintenance of Cellular Redox Status in Synechococcus elongatus PCC 7942. FRONTIERS IN PLANT SCIENCE 2020; 11:231. [PMID: 32194605 PMCID: PMC7063034 DOI: 10.3389/fpls.2020.00231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
An excess of reactive oxygen species (ROS) can cause severe oxidative damage to cellular components in photosynthetic cells. Antioxidant systems, such as the glutathione (GSH) pools, regulate redox status in cells to guard against such damage. Dehydroascorbate reductase (DHAR, EC 1.8.5.1) catalyzes the glutathione-dependent reduction of oxidized ascorbate (dehydroascorbate) and contains a redox active site and glutathione binding-site. The DHAR gene is important in biological and abiotic stress responses involving reduction of the oxidative damage caused by ROS. In this study, transgenic Synechococcus elongatus PCC 7942 (TA) was constructed by cloning the Oryza sativa L. japonica DHAR (OsDHAR) gene controlled by an isopropyl β-D-1-thiogalactopyranoside (IPTG)-inducible promoter (Ptrc) into the cyanobacterium to study the functional activities of OsDHAR under oxidative stress caused by hydrogen peroxide exposure. OsDHAR expression increased the growth of S. elongatus PCC 7942 under oxidative stress by reducing the levels of hydroperoxides and malondialdehyde (MDA) and mitigating the loss of chlorophyll. DHAR and glutathione S-transferase activity were higher than in the wild-type S. elongatus PCC 7942 (WT). Additionally, overexpression of OsDHAR in S. elongatus PCC 7942 greatly increased the glutathione (GSH)/glutathione disulfide (GSSG) ratio in the presence or absence of hydrogen peroxide. These results strongly suggest that DHAR attenuates deleterious oxidative effects via the glutathione (GSH)-dependent antioxidant system in cyanobacterial cells. The expression of heterologous OsDHAR in S. elongatus PCC 7942 protected cells from oxidative damage through a GSH-dependent antioxidant system via GSH-dependent reactions at the redox active site and GSH binding site residues during oxidative stress.
Collapse
Affiliation(s)
- Young-Saeng Kim
- Research Institute for Dok-do and Ulleung-do, Kyungpook National University, Daegu, South Korea
| | - Seong-Im Park
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
- Department of Biology, Kyungpook National University, Daegu, South Korea
| | - Jin-Ju Kim
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
- Department of Biology, Kyungpook National University, Daegu, South Korea
| | - Joseph S. Boyd
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Joris Beld
- Department of Microbiology and Immunology, College of Medicine, Drexel University, Philadelphia, PA, United States
| | - Arnaud Taton
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Kyoung-In Lee
- Biotechnology Industrialization Center, Dongshin University, Naju, South Korea
| | - Il-Sup Kim
- Advanced Bio Resource Research Center, Kyungpook National University, Daegu, South Korea
| | - James W. Golden
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Ho-Sung Yoon
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
- Department of Biology, Kyungpook National University, Daegu, South Korea
- Advanced Bio Resource Research Center, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
2
|
Irazusta V, Bernal AR, Estévez MC, de Figueroa LIC. Proteomic and enzymatic response under Cr(VI) overload in yeast isolated from textile-dye industry effluent. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 148:490-500. [PMID: 29121591 DOI: 10.1016/j.ecoenv.2017.10.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/18/2017] [Accepted: 10/31/2017] [Indexed: 06/07/2023]
Abstract
Cyberlindnera jadinii M9 and Wickerhamomyces anomalus M10 isolated from textile-dye liquid effluents has shown capacity for chromium detoxification via Cr(VI) biological reduction. The aim of the study was to evaluate the effect of hexavalent chromium on synthesis of novel and/or specific proteins involved in chromium tolerance and reduction in response to chromium overload in two indigenous yeasts. A study was carried out following a proteomic approach with W. anomalus M10 and Cy. jadinii M9 strains. For this, proteins extracts belonging to total cell extracts, membranes and mitochondria were analyzed. When Cr(VI) was added to culture medium there was an over-synthesis of 39 proteins involved in different metabolic pathways. In both strains, chromium supplementation changed protein biosynthesis by upregulating proteins involved in stress response, methionine metabolism, energy production, protein degradation and novel oxide-reductase enzymes. Moreover, we observed that Cy. jadinii M9 and W. anomalus M10 displayed ability to activate superoxide dismutase, catalase and chromate reductase activity. Two enzymes from the total cell extracts, type II nitroreductase (Frm2) and flavoprotein wrbA (Ycp4), were identified as possibly responsible for inducing crude chromate-reductase activity in cytoplasm of W. anomalus M10 under chromium overload. In Cy.jadinii M9, mitochondrial Ferredoxine-NADP reductase (Yah1) and membrane FAD flavoprotein (Lpd1) were identified as probably involved in Cr(VI) reduction. To our knowledge, this is the first study proposing chromate reductase activity of these four enzymes in yeast and reporting a relationship between protein synthesis, enzymatic response and chromium biospeciation in Cy. jadinii and W. anomalus.
Collapse
Affiliation(s)
- Verónica Irazusta
- PROIMI-CONICET, Av. Belgrano y Pje. Caseros, Tucumán T4001MVB, Argentina; Facultad de Ciencias Naturales, Universidad Nacional de Salta, Salta, Argentina; INIQUI-CONICET, Av. Bolivia 5150, Salta 4400, Argentina.
| | | | - María Cristina Estévez
- PROIMI-CONICET, Av. Belgrano y Pje. Caseros, Tucumán T4001MVB, Argentina; Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Lucía I C de Figueroa
- PROIMI-CONICET, Av. Belgrano y Pje. Caseros, Tucumán T4001MVB, Argentina; Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| |
Collapse
|
3
|
Microbial cyclophilins: specialized functions in virulence and beyond. World J Microbiol Biotechnol 2017; 33:164. [PMID: 28791545 DOI: 10.1007/s11274-017-2330-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/05/2017] [Indexed: 01/18/2023]
Abstract
Cyclophilins belong to the superfamily of peptidyl-prolyl cis/trans isomerases (PPIases, EC: 5.2.1.8), the enzymes that catalyze the cis/trans isomerization of peptidyl-prolyl peptide bonds in unfolded and partially folded polypeptide chains and native state proteins. Cyclophilins have been extensively studied, since they are involved in multiple cellular processes related to human pathologies, such as neurodegenerative disorders, infectious diseases, and cancer. However, the presence of cyclophilins in all domains of life indicates a broader biological importance. In this mini-review, we summarize current advances in the study of microbial cyclophilins. Apart from their anticipated role in protein folding and chaperoning, cyclophilins are involved in several other biological processes, such as cellular signal transduction, adaptation to stress, control of pathogens virulence, and modulation of host immune response. Since many existing family members do not have well-defined functions and novel ones are being characterized, the requirement for further studies on their biological role and molecular mechanism of action is apparent.
Collapse
|
4
|
Kim IS, Kim YS, Kim H, Jin I, Yoon HS. Saccharomyces cerevisiae KNU5377 stress response during high-temperature ethanol fermentation. Mol Cells 2013; 35:210-8. [PMID: 23512334 PMCID: PMC3887908 DOI: 10.1007/s10059-013-2258-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 11/07/2012] [Accepted: 11/08/2012] [Indexed: 02/03/2023] Open
Abstract
Fuel ethanol production is far more costly to produce than fossil fuels. There are a number of approaches to cost-effective fuel ethanol production from biomass. We characterized stress response of thermotolerant Saccharomyces cerevisiae KNU5377 during glucose-based batch fermentation at high temperature (40°C). S. cerevisiae KNU5377 (KNU5377) transcription factors (Hsf1, Msn2/4, and Yap1), metabolic enzymes (hexokinase, glyceraldehyde-3-phosphate dehydrogenase, glucose-6-phosphate dehydrogenase, isocitrate dehydrogenase, and alcohol dehydrogenase), antioxidant enzymes (thioredoxin 3, thioredoxin reductase, and porin), and molecular chaperones and its cofactors (Hsp104, Hsp82, Hsp60, Hsp42, Hsp30, Hsp26, Cpr1, Sti1, and Zpr1) are upregulated during fermentation, in comparison to S. cerevisiae S288C (S288C). Expression of glyceraldehyde-3-phosphate dehydrogenase increased significantly in KNU5377 cells. In addition, cellular hydroperoxide and protein oxidation, particularly lipid peroxidation of triosephosphate isomerase, was lower in KNU5377 than in S288C. Thus, KNU5377 activates various cell rescue proteins through transcription activators, improving tolerance and increasing alcohol yield by rapidly responding to fermentation stress through redox homeostasis and proteostasis.
Collapse
Affiliation(s)
- Il-Sup Kim
- Advanced Bio-resource Research Center, Kyungpook National University, Daegu 702-701,
Korea
| | - Young-Saeng Kim
- Department of Biology, Kyungpook National University, Daegu 702-701,
Korea
| | - Hyun Kim
- Department of Microbiology, Kyungpook National University, Daegu 702-701,
Korea
| | - Ingnyol Jin
- Department of Microbiology, Kyungpook National University, Daegu 702-701,
Korea
| | - Ho-Sung Yoon
- Advanced Bio-resource Research Center, Kyungpook National University, Daegu 702-701,
Korea
- Department of Biology, Kyungpook National University, Daegu 702-701,
Korea
| |
Collapse
|
5
|
Kim IS, Kim HY, Kim YS, Choi HG, Kang SH, Yoon HS. Expression of dehydrin gene from Arctic Cerastium arcticum increases abiotic stress tolerance and enhances the fermentation capacity of a genetically engineered Saccharomyces cerevisiae laboratory strain. Appl Microbiol Biotechnol 2013; 97:8997-9009. [PMID: 23377791 DOI: 10.1007/s00253-013-4729-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 01/13/2013] [Accepted: 01/15/2013] [Indexed: 11/25/2022]
Abstract
We investigated Arctic plants to determine if they have a specific mechanism enabling them to adapt to extreme environments because they are subject to such conditions throughout their life cycles. Among the cell defense systems of the Arctic mouse-ear chickweed Cerastium arcticum, we identified a stress-responsive dehydrin gene CaDHN that belongs to the SK5 subclass and contains conserved regions with one S segment at the N-terminus and five K segments from the N-terminus to the C-terminus. To investigate the molecular properties of CaDHN, the yeast Saccharomyces was transformed with CaDHN. CaDHN-expressing transgenic yeast (TG) cells recovered more rapidly from challenge with exogenous stimuli, including oxidants (hydrogen peroxide, menadione, and tert-butyl hydroperoxide), high salinity, freezing and thawing, and metal (Zn(2+)), than wild-type (WT) cells. TG cells were sensitive to copper, cobalt, and sodium dodecyl sulfate. In addition, the cell survival of TG cells was higher than that of WT cells when cells at the mid-log and stationary stages were exposed to increased ethanol concentrations. There was a significant difference in cultures that have an ethanol content >16 %. During glucose-based batch fermentation at generally used (30 °C) and low (18 °C) temperatures, TG cells produced a higher alcohol concentration through improved cell survival. Specifically, the final alcohol concentrations were 13.3 and 13.2 % in TG cells during fermentation at 30 and 18 °C, respectively, whereas they were 10.2 and 9.4 %, respectively, in WT cells under the same fermentation conditions. An in vitro assay revealed that purified CaDHN acted as a reactive oxygen species scavenger by neutralizing H2O2 and a chaperone by preventing high temperature-mediated catalase inactivation. Taken together, our results show that CaDHN expression in transgenic yeast confers tolerance to various abiotic stresses by improving redox homeostasis and enhances fermentation capacity, especially at low temperatures (18 °C).
Collapse
Affiliation(s)
- Il-Sup Kim
- Advanced Bio-resource R&D Center, Department of Biology, College of Natural Sciences, Kyungpook National University, #1370 Sankyuk-dong, Buk-gu, Daegu, 702-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
6
|
Identification of chaperones in freeze tolerance in Saccharomyces cerevisiae. J Microbiol 2012; 50:882-7. [DOI: 10.1007/s12275-012-2411-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 09/18/2012] [Indexed: 12/18/2022]
|
7
|
Kim IS, Kim YS, Yoon HS. Expression of salt-induced 2-Cys peroxiredoxin from Oryza sativa increases stress tolerance and fermentation capacity in genetically engineered yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2012; 97:3519-33. [DOI: 10.1007/s00253-012-4410-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 08/22/2012] [Accepted: 08/26/2012] [Indexed: 12/15/2022]
|
8
|
Glutathione reductase from Brassica rapa affects tolerance and the redox state but not fermentation ability in response to oxidative stress in genetically modified Saccharomyces cerevisiae. World J Microbiol Biotechnol 2012; 28:1901-15. [PMID: 22806013 DOI: 10.1007/s11274-011-0988-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 12/19/2011] [Indexed: 10/14/2022]
|