1
|
Wellman R, Jacobson D, Secrier M, Labbadia J. Distinct patterns of proteostasis network gene expression are associated with different prognoses in melanoma patients. Sci Rep 2024; 14:198. [PMID: 38167612 PMCID: PMC10761826 DOI: 10.1038/s41598-023-50640-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
The proteostasis network (PN) is a collection of protein folding and degradation pathways that spans cellular compartments and acts to preserve the integrity of the proteome. The differential expression of PN genes is a hallmark of many cancers, and the inhibition of protein quality control factors is an effective way to slow cancer cell growth. However, little is known about how the expression of PN genes differs between patients and how this impacts survival outcomes. To address this, we applied unbiased hierarchical clustering to gene expression data obtained from primary and metastatic cutaneous melanoma (CM) samples and found that two distinct groups of individuals emerge across each sample type. These patient groups are distinguished by the differential expression of genes encoding ATP-dependent and ATP-independent chaperones, and proteasomal subunits. Differences in PN gene expression were associated with increased levels of the transcription factors, MEF2A, SP4, ZFX, CREB1 and ATF2, as well as markedly different survival outcomes. However, surprisingly, similar PN alterations in primary and metastatic samples were associated with discordant survival outcomes in patients. Our findings reveal that the expression of PN genes demarcates CM patients and highlights several new proteostasis sub-networks that could be targeted for more effective suppression of CM within specific individuals.
Collapse
Affiliation(s)
- Rachel Wellman
- Division of Biosciences, Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, UK
- Division of Biosciences, Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College London, London, UK
| | - Daniel Jacobson
- Division of Biosciences, Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College London, London, UK
- UCL Cancer Institute, University College London, London, UK
| | - Maria Secrier
- Division of Biosciences, Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College London, London, UK.
| | - John Labbadia
- Division of Biosciences, Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, UK.
| |
Collapse
|
2
|
Bieńkowska-Tokarczyk A, Stelmaszczyk-Emmel A, Demkow U, Małecki M. Hyperthermia Enhances Adeno-Associated Virus Vector Transduction Efficiency in Melanoma Cells. Curr Issues Mol Biol 2023; 45:8519-8538. [PMID: 37886980 PMCID: PMC10604982 DOI: 10.3390/cimb45100537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Gene therapy perfectly fits in the current needs of medicine for patients with melanoma. One of the major challenges of gene therapy is to increase gene transfer. The role of hyperthermia in the improvement of AAV (adeno-associated virus) transduction efficiency has been indicated. The aim of the present study was to assess the transduction efficacy of melanoma cell lines (A375, G-361, and SK-MEL-1) with the use of the rAAV/DJ mosaic vector under hyperthermia conditions. The analysis of changes in the transduction efficacy and expression of HSPs (heat shock proteins) and receptors for AAV was performed. The transduction was performed at 37 °C and at 43 °C (1 h). Hyperthermia enhanced gene transfer in all the tested cell lines. The most efficient transducing cell line under hyperthermia was A375 (increase by 17%). G361 and SK-MEL-1 cells showed an increase of 7%. The changes in the expression of the AAV receptors and HSPs after hyperthermia were observed. A key role in the improvement of gene transfer may be played by AAVR, HSPB1, HSP6, DNAJC4, HSPD1, HSPA8, HSPA9, HSP90AB1, and AHSA1. This study showed the possibility of the use of hyperthermia as a factor enabling the stimulation of cell transduction with rAAV vectors, thereby providing tools for the improvement in the efficacy of gene therapy based on rAAV.
Collapse
Affiliation(s)
- Alicja Bieńkowska-Tokarczyk
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, 02-097 Warsaw, Poland
| | - Anna Stelmaszczyk-Emmel
- Department of Laboratory Medicine and Clinical Immunology of Developmental Age, Faculty of Medicine, Medical University of Warsaw, 63a Żwirki i Wigury Street, 02-091 Warsaw, Poland
| | - Urszula Demkow
- Department of Laboratory Medicine and Clinical Immunology of Developmental Age, Faculty of Medicine, Medical University of Warsaw, 63a Żwirki i Wigury Street, 02-091 Warsaw, Poland
| | - Maciej Małecki
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, 02-097 Warsaw, Poland
- Laboratory of Gene Therapy, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, 02-097 Warsaw, Poland
| |
Collapse
|
3
|
Tavakoli S, Adili A, Akbari M, Tamjidifar R, Tarzi S, Saadat M, Hatamnezhad LS, Shotorbani BS, Shotorbani SS. Inhibition effect of Hsp90 on TLR2, TLR4, and MAPK signaling pathway in melanoma in-vitro. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Inhibition of the Human Hsc70 System by Small Ligands as a Potential Anticancer Approach. Cancers (Basel) 2021; 13:cancers13122936. [PMID: 34208232 PMCID: PMC8230956 DOI: 10.3390/cancers13122936] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary High levels of Heat shock proteins (Hsps) in specific cancers are usually linked to a poor prognosis, tumor progression, invasiveness, and resistance to treatment. Chaperone inhibition could therefore be toxic for cancer cells due to their high dependence on chaperone activity to survive. This study shows the potential to repurpose the small chemical compound pinaverium bromide, currently used to treat functional gastrointestinal disorders, as a possible antitumor drug since it displays a marked toxicity against two melanoma cell lines without affecting the viability of fibroblast and primary melanocytes. This compound interacts with structural regions shared by representatives of the Hsp70 and Hsp110 families, inhibiting the substrate remodeling ability of the Hsp70 system in vitro and in a cellular context. Abstract Heat shock protein (Hsp) synthesis is upregulated in a wide range of cancers to provide the appropriate environment for tumor progression. The Hsp110 and Hsp70 families have been associated to cancer cell survival and resistance to chemotherapy. In this study, we explore the strategy of drug repurposing to find new Hsp70 and Hsp110 inhibitors that display toxicity against melanoma cancer cells. We found that the hits discovered using Apg2, a human representative of the Hsp110 family, as the initial target bind also to structural regions present in members of the Hsp70 family, and therefore inhibit the remodeling activity of the Hsp70 system. One of these compounds, the spasmolytic agent pinaverium bromide used for functional gastrointestinal disorders, inhibits the intracellular chaperone activity of the Hsp70 system and elicits its cytotoxic activity specifically in two melanoma cell lines by activating apoptosis. Docking and molecular dynamics simulations indicate that this compound interacts with regions located in the nucleotide-binding domain and the linker of the chaperones, modulating their ATPase activity. Thus, repurposing of pinaverium bromide for cancer treatment appears as a promising novel therapeutic approach.
Collapse
|
5
|
Abstract
HSP90 (heat shock protein 90) is an ATP-dependent molecular chaperone involved in a proper folding and maturation of hundreds of proteins. HSP90 is abundantly expressed in cancer, including melanoma. HSP90 client proteins are the key oncoproteins of several signaling pathways controlling melanoma development, progression and response to therapy. A number of natural and synthetic compounds of different chemical structures and binding sites within HSP90 have been identified as selective HSP90 inhibitors. The majority of HSP90-targeting agents affect N-terminal ATPase activity of HSP90. In contrast to N-terminal inhibitors, agents interacting with the middle and C-terminal domains of HSP90 do not induce HSP70-dependent cytoprotective response. Several inhibitors of HSP90 were tested against melanoma in pre-clinical studies and clinical trials, providing evidence that these agents can be considered either as single or complementary therapeutic strategy. This review summarizes current knowledge on the role of HSP90 protein in cancer with focus on melanoma, and provides an overview of structurally different HSP90 inhibitors that are considered as potential therapeutics for melanoma treatment.
Collapse
Affiliation(s)
| | - Mariusz L Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland.
| |
Collapse
|
6
|
Krawczyk MA, Pospieszynska A, Styczewska M, Bien E, Sawicki S, Marino Gammazza A, Fucarino A, Gorska-Ponikowska M. Extracellular Chaperones as Novel Biomarkers of Overall Cancer Progression and Efficacy of Anticancer Therapy. APPLIED SCIENCES 2020; 10:6009. [DOI: 10.3390/app10176009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Exosomal heat shock proteins (Hsps) are involved in intercellular communication both in physiological and pathological conditions. They play a role in key processes of carcinogenesis including immune system regulation, cell differentiation, vascular homeostasis and metastasis formation. Thus, exosomal Hsps are emerging biomarkers of malignancies and possible therapeutic targets. Adolescents and young adults (AYAs) are patients aged 15–39 years. This age group, placed between pediatric and adult oncology, pose a particular challenge for cancer management. New biomarkers of cancer growth and progression as well as prognostic factors are desperately needed in AYAs. In this review, we attempted to summarize the current knowledge on the role of exosomal Hsps in selected solid tumors characteristic for the AYA population and/or associated with poor prognosis in this age group. These included malignant melanoma, brain tumors, and breast, colorectal, thyroid, hepatocellular, lung and gynecological tract carcinomas. The studies on exosomal Hsps in these tumors are limited; however; some have provided promising results. Although further research is needed, there is potential for future clinical applications of exosomal Hsps in AYA cancers, both as novel biomarkers of disease presence, progression or relapse, or as therapeutic targets or tools for drug delivery.
Collapse
|
7
|
17-Aminogeldanamycin selectively diminishes IRE1α-XBP1s pathway activity and cooperatively induces apoptosis with MEK1/2 and BRAF V600E inhibitors in melanoma cells of different genetic subtypes. Apoptosis 2020; 24:596-611. [PMID: 30989459 PMCID: PMC6598962 DOI: 10.1007/s10495-019-01542-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Outcomes of melanoma patient treatment remain unsatisfactory despite accessibility of oncoprotein-targeting drugs and immunotherapy. Here, we reported that 17-aminogeldanamycin more potently activated caspase-3/7 in BRAFV600E melanoma cells than geldanamycin, another inhibitor of heat shock protein 90 (HSP90). 17-aminogeldanamycin alleviated self-triggered compensatory increase in HSP70 mRNA level and induced endoplasmic reticulum (ER) stress, which was followed by selective diminution of cytoprotective IRE1α-XBP1s pathway activity of unfolded protein response (UPR), inhibition of ERK1/2 activity and induction of apoptosis. Concomitantly, ATF6/p50 level and expression of PERK-dependent genes, CHOP and BIM, remained unaltered. This might result from an inframe deletion in EIF2AK3 leading to a PERKL21del variant revealed by whole-exome sequencing in melanoma cell lines. 17-aminogeldanamycin exhibited similar activity in NRASQ61R melanoma cells that harbored a heterozygous inactivating variant of NAD(P)H:quinone oxidoreductase 1 (NQO1P187S). In addition, 17-aminogeldanamycin acted cooperatively with trametinib (an inhibitor of MEK1/2) and vemurafenib (an inhibitor of BRAFV600E) in induction of apoptosis in melanoma cell lines as evidenced by in-cell caspase-3/7 activation and PARP cleavage that occurred earlier compared with either drug used alone. As trametinib and vemurafenib did not significantly affect HSP70 and GRP78 transcript levels, cooperation of MEK/BRAFV600E inhibitors and 17-aminogeldanamycin might result from a concurrent inhibition of the RAS/RAF/MEK/ERK cascade and IRE1α-dependent signaling, and cell-intrinsic ER homeostasis can determine the extent of the drug cooperation. Our study indicates that 17-aminogeldanamycin takes several advantages compared with other HSP90-targeting compounds, and can complement activity of BRAF/MEK inhibitors in melanoma cells of different genetic subtypes.
Collapse
|
8
|
Kamm A, Przychodzeń P, Kuban–Jankowska A, Marino Gammazza A, Cappello F, Daca A, Żmijewski MA, Woźniak M, Górska–Ponikowska M. 2-Methoxyestradiol and Its Combination with a Natural Compound, Ferulic Acid, Induces Melanoma Cell Death via Downregulation of Hsp60 and Hsp90. JOURNAL OF ONCOLOGY 2019; 2019:9293416. [PMID: 32082378 PMCID: PMC7012217 DOI: 10.1155/2019/9293416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/28/2019] [Accepted: 09/04/2019] [Indexed: 12/15/2022]
Abstract
Melanoma is an aggressive type of skin cancer with one of the highest mortality rates. Notably, its incidence in the last few decades has increased faster than any other cancer. Therefore, searching for novel anticancer therapies is of great clinical importance. In the present study, we investigated the anticancer potential of 2-methoxyestradiol, potent chemotherapeutic, in the A375 melanoma cellular model. In order to furthermore evaluate the anticancer efficacy of 2-methoxyestradiol, we have additionally combined the treatment with a naturally occurring polyphenol, ferulic acid. The results were obtained using the melanoma A375 cellular model. In the study, we used MTT assay, flow cytometry, and western blot techniques. Herein, we have evidenced that the molecular mechanism of action of 2-methoxyestradiol and ferulic acid is partly related to the reduction of Hsp60 and Hsp90 levels and the induction of nitric oxide in the A375 melanoma cell model, while no changes were observed in Hsp70 expression after 2-methoxyestradiol and ferulic acid treatment separately or in combination. This is especially important in case of chemoresistance mechanisms because the accumulation of Hsp70 reduces induction of cancer cell death, thus decreasing antitumour efficacy.
Collapse
Affiliation(s)
- Anna Kamm
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk 80-211, Poland
| | - Paulina Przychodzeń
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk 80-211, Poland
| | | | - Antonella Marino Gammazza
- Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
| | - Francesco Cappello
- Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
| | - Agnieszka Daca
- Department of Pathology and Rheumatology, Medical University of Gdansk, Gdansk 80-211, Poland
| | - Michał A. Żmijewski
- Department of Histology, Medical University of Gdansk, Gdansk 80-211, Poland
| | - Michał Woźniak
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk 80-211, Poland
| | - Magdalena Górska–Ponikowska
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk 80-211, Poland
- Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
- Department of Biophysics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
9
|
Low levels of intra-tumoural T cells in breast cancer identify clinically frail patients with shorter disease-specific survival. J Geriatr Oncol 2018; 9:606-612. [PMID: 29685380 DOI: 10.1016/j.jgo.2018.03.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 11/18/2017] [Accepted: 03/31/2018] [Indexed: 12/31/2022]
Abstract
OBJECTIVES The global health status of older patients with cancer influences their clinical course, but little is known regarding the influence of the immune system on the global health of older patients with cancer. The goal of this study was to assess the relationships between patient fitness/frailty status and survival, and the local tumour immune environment of older patients with breast cancer. MATERIALS AND METHODS In a cohort of 58 older patients with breast cancer (over 70 years of age), fluorescence microscopy was used to investigate whether levels of intra-tumoural T cells (CD3+) and granulocytic cells (CD15+) could predict clinical outcome, and/or whether they correlated with patient physical and mental performance as evaluated by comprehensive geriatric assessment. RESULTS We observed that patients with higher levels of intra-tumoural T cells were fitter according to a number of clinical health measures including G8 (p = 0.006), Karnofsky Index (p = 0.0372), and Leuven Oncology Frailty Score (LOFS) (p = 0.0187). In contrast, high relative levels of granulocytic cells were found in patients with poorer clinical health (LOFS, p = 0.0474). Furthermore, high levels of T cells but not granulocytic cells were associated with longer breast cancer-specific survival (p = 0.0444). CONCLUSIONS This is the first study to show that low relative levels of intra-tumoural T cells are associated with inferior patient fitness. In contrast to T cells, we observed that intra-tumoural granulocytic cells displayed an inverse relationship with patient performance. Further research is needed to determine whether boosting the level of intra-tumoural T cells in older non-fit patients can result in improved outcome.
Collapse
|
10
|
Sidor-Kaczmarek J, Cichorek M, Spodnik JH, Wójcik S, Moryś J. Proteasome inhibitors against amelanotic melanoma. Cell Biol Toxicol 2017; 33:557-573. [PMID: 28281027 PMCID: PMC5658467 DOI: 10.1007/s10565-017-9390-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 02/15/2017] [Indexed: 12/11/2022]
Abstract
The incidence of malignant melanoma, the most aggressive skin cancer, is increasing constantly. Despite new targeted therapies, the prognosis for patients with metastatic disease remains poor. Thus, there is a need for new combinational treatments, and antineoplastic agents potentially valuable in this approach are inhibitors of the ubiquitin-proteasome system (UPS). In this work, we analyze the cytotoxicity mechanisms of proteasome inhibitors (MG-132, epoxomicin, and lactacystin) in a specific form of melanoma which does not synthesize melanin-the amelanotic melanoma (Ab cells). We found that the most cytotoxic of the compounds tested was epoxomicin. Caspase-9 activation as well as cytochrome C and AIF release from mitochondria indicated that exposure to epoxomicin induced the mitochondrial pathway of apoptosis. Epoxomicin treatment also resulted in accumulation of Bcl-2 family members-proapoptotic Noxa and antiapoptotic Mcl-1, which were postulated as the targets for bortezomib in melanoma. Inhibition of caspases by BAF revealed that cell death was partially caspase-independent. We observed no cell cycle arrest preceding the apoptosis of Ab cells, even though cdk inhibitors p21Cip1/Waf1 and p27Kip1 were up-regulated. The cell cycle was blocked only after inactivation of caspases by the pan-caspase inhibitor BAF. In summary, this is the first study exploring molecular mechanisms of cell death induced by epoxomicin in melanoma. We found that Ab cells died on the mitochondrial pathway of apoptosis and also partially by the caspase-independent way of death. Apoptosis induction was fast and efficient and was not preceded by cell cycle arrest.
Collapse
Affiliation(s)
| | | | - Jan Henryk Spodnik
- Department of Anatomy and Neurobiology, Medical University of Gdansk, Gdansk, Poland
| | - Sławomir Wójcik
- Department of Anatomy and Neurobiology, Medical University of Gdansk, Gdansk, Poland
| | - Janusz Moryś
- Department of Anatomy and Neurobiology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
11
|
Speigl L, Janssen N, Weide B, Pawelec G, Shipp C. Prognostic impact of the putative cancer stem cell markers ABCG2, CD133, ALDH1A1 and CD44V7/8 in metastatic melanoma. Br J Dermatol 2017; 177:1447-1449. [PMID: 27870003 DOI: 10.1111/bjd.15194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- L Speigl
- Department of Internal Medicine II
| | | | - B Weide
- Department of Dermatology, University Hospital Tübingen, Tübingen, Germany
| | - G Pawelec
- Department of Internal Medicine II.,School of Science and Technology, College of Arts and Science, Nottingham Trent University, Nottingham, U.K
| | - C Shipp
- Department of Internal Medicine II
| |
Collapse
|
12
|
Demirsoy S, Martin S, Maes H, Agostinis P. Adapt, Recycle, and Move on: Proteostasis and Trafficking Mechanisms in Melanoma. Front Oncol 2016; 6:240. [PMID: 27896217 PMCID: PMC5108812 DOI: 10.3389/fonc.2016.00240] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/27/2016] [Indexed: 12/21/2022] Open
Abstract
Melanoma has emerged as a paradigm of a highly aggressive and plastic cancer, capable to co-opt the tumor stroma in order to adapt to the hostile microenvironment, suppress immunosurveillance mechanisms, and disseminate. In particular, oncogene- and aneuploidy-driven dysregulations of proteostasis in melanoma cells impose a rewiring of central proteostatic processes, such as the heat shock and unfolded protein responses, autophagy, and the endo-lysosomal system, to avoid proteotoxicity. Research over the past decade has indicated that alterations in key nodes of these proteostasis pathways act in conjunction with crucial oncogenic drivers to increase intrinsic adaptations of melanoma cells against proteotoxic stress, modulate the high metabolic demand of these cancer cells and the interface with other stromal cells, through the heightened release of soluble factors or exosomes. Here, we overview and discuss how key proteostasis pathways and vesicular trafficking mechanisms are turned into vital conduits of melanoma progression, by supporting cancer cell's adaptation to the microenvironment, limiting or modulating the ability to respond to therapy and fueling melanoma dissemination.
Collapse
Affiliation(s)
- Seyma Demirsoy
- Laboratory for Cell Death Research and Therapy, Department of Cellular and Molecular Medicine, KU Leuven , Leuven , Belgium
| | - Shaun Martin
- Laboratory for Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven , Leuven , Belgium
| | - Hannelore Maes
- Laboratory for Cell Death Research and Therapy, Department of Cellular and Molecular Medicine, KU Leuven , Leuven , Belgium
| | - Patrizia Agostinis
- Laboratory for Cell Death Research and Therapy, Department of Cellular and Molecular Medicine, KU Leuven , Leuven , Belgium
| |
Collapse
|
13
|
Targeting the heat shock response in combination with radiotherapy: Sensitizing cancer cells to irradiation-induced cell death and heating up their immunogenicity. Cancer Lett 2015; 368:209-29. [DOI: 10.1016/j.canlet.2015.02.047] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/22/2015] [Accepted: 02/26/2015] [Indexed: 12/16/2022]
|
14
|
Barbagallo I, Parenti R, Zappalà A, Vanella L, Tibullo D, Pepe F, Onni T, Li Volti G. Combined inhibition of Hsp90 and heme oxygenase-1 induces apoptosis and endoplasmic reticulum stress in melanoma. Acta Histochem 2015; 117:705-11. [PMID: 26493719 DOI: 10.1016/j.acthis.2015.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 12/16/2022]
Abstract
Heat shock proteins are ubiquitous molecular chaperones involved in post-translational folding, stability, activation and maturation of many proteins that are essential mediators of signal transduction and cell cycle progression. Heat shock protein 90 (Hsp90) has recently emerged as an attractive therapeutic target in cancer treatment since it may act as a key regulator of various oncogene products and cell-signaling molecules. Heme oxygenase-1 (HO-1; also known as Hsp32) is an inducible enzyme participating in heme degradation and involved in oxidative stress resistance. Recent studies indicate that HO-1 activation may play a role in tumor development and progression. In the present study we investigated the chemotherapic effects of combining an Hsp90 inhibitor (NMS E973) and an HO-1 inhibitor (SnMP) on A375 melanoma cells. NMS E973 treatment was able to reduce cell viability and induce endoplasmic reticulum (ER) stress (i.e. Ire1α, ERO1, PDI, BIP and CHOP). Interestingly, no significant effect was observed in reactive oxygen species (ROS) formation. Finally, NMS E973 treatment resulted in a significant HO-1 overexpression, which in turn serves as a possible chemoresistance molecular mechanism. Interestingly, the combination of NMS E973 and SnMP produced an increase of ROS and reduced cell viability compared to NMS E973 treatment alone. The inhibitors combination exhibited higher ER stress, apoptosis as evidenced by bifunctional apoptosis regulator (BFAR) mRNA expression and lower phosphorylation of Akt when compared to NMS E973 alone. In conclusion, these data suggest that HO-1 inhibition potentiates NMS E973 toxicity and may be exploited as a strategy for melanoma treatment.
Collapse
Affiliation(s)
- Ignazio Barbagallo
- Department of Drug Sciences, University of Catania, Via Andrea Doria 6, 95125 Catania, Italy; EuroMediterranean Institute of Science and Technology, Via Emerico Amari 123, 90139 Palermo, Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Andrea Doria 6, 95125 Catania, Italy
| | - Agata Zappalà
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Andrea Doria 6, 95125 Catania, Italy
| | - Luca Vanella
- Department of Drug Sciences, University of Catania, Via Andrea Doria 6, 95125 Catania, Italy
| | - Daniele Tibullo
- Division of Hematology, AOU "Policlinico-Vittorio Emauele", University of Catania, Via Santa Sofia 78, 95125 Catania, Italy
| | - Francesco Pepe
- Department of Biomedical Sciences, Section of Physiology, University of Catania, Via Andrea Doria 6, 95125 Italy
| | - Toniangelo Onni
- Department of Biomedical Sciences, Section of Physiology, University of Catania, Via Andrea Doria 6, 95125 Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Andrea Doria 6, 95125 Catania, Italy; EuroMediterranean Institute of Science and Technology, Via Emerico Amari 123, 90139 Palermo, Italy.
| |
Collapse
|
15
|
Gallardo F, Padrón A, Garcia-Carbonell R, Rius C, González-Perez A, Arumí-Uria M, Iglesias M, Nonell L, Bellosillo B, Segura S, Pujol RM, Lopez-Bigas N, Bertran J, Bigas A, Espinosa L. Cytoplasmic accumulation of NCoR in malignant melanoma: consequences of altered gene repression and prognostic significance. Oncotarget 2015; 6:9284-94. [PMID: 25823659 PMCID: PMC4496217 DOI: 10.18632/oncotarget.3252] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/31/2015] [Indexed: 11/25/2022] Open
Abstract
Invasive malignant melanoma (MM) is an aggressive tumor with no curative therapy available in advanced stages. Nuclear corepressor (NCoR) is an essential regulator of gene transcription, and its function has been found deregulated in different types of cancer. In colorectal cancer cells, loss of nuclear NCoR is induced by Inhibitor of kappa B kinase (IKK) through the phosphorylation of specific serine residues. We here investigate whether NCoR function impacts in MM, which might have important diagnostic and prognostic significance. By IHC, we here determined the subcellular distribution of NCoR in a cohort of 63 primary invasive MM samples, and analyzed its possible correlation with specific clinical parameters. We therefore used a microarray-based strategy to determine global gene expression differences in samples with similar tumor stage, which differ in the presence of cytoplasmic or nuclear NCoR. We found that loss of nuclear NCoR results in upregulation of a specific cancer-related genetic signature, and is significantly associated with MM progression. Inhibition of IKK activity in melanoma cells reverts NCoR nuclear distribution and specific NCoR-regulated gene transcription. Analysis of public database demonstrated that inactivating NCoR mutations are highly prevalent in MM, showing features of driver oncogene.
Collapse
Affiliation(s)
- Fernando Gallardo
- Dermatology Department, Parc de Salut Mar-Hospital del Mar, Barcelona, Spain
| | - Andreina Padrón
- Pathology Department, Parc de Salut Mar-Hospital del Mar, Barcelona, Spain
| | - Ricard Garcia-Carbonell
- Stem Cells and Cancer Research Laboratory, Institut Hospital del Mar Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Cristina Rius
- Stem Cells and Cancer Research Laboratory, Institut Hospital del Mar Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Abel González-Perez
- Research Unit on Biomedical Informatics, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | | | - Mar Iglesias
- Pathology Department, Parc de Salut Mar-Hospital del Mar, Barcelona, Spain
| | - Lara Nonell
- Servei d’Anàlisi de Microarrays, Institut Hospital del Mar Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Beatriz Bellosillo
- Pathology Department, Parc de Salut Mar-Hospital del Mar, Barcelona, Spain
| | - Sonia Segura
- Dermatology Department, Parc de Salut Mar-Hospital del Mar, Barcelona, Spain
| | - Ramon Maria Pujol
- Dermatology Department, Parc de Salut Mar-Hospital del Mar, Barcelona, Spain
| | - Nuria Lopez-Bigas
- Research Unit on Biomedical Informatics, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys, Barcelona, Spain
| | - Joan Bertran
- Universitat de Vic, Universitat Central de Catalunya (UVic-UCC), Vic, Spain
| | - Anna Bigas
- Stem Cells and Cancer Research Laboratory, Institut Hospital del Mar Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Lluís Espinosa
- Stem Cells and Cancer Research Laboratory, Institut Hospital del Mar Investigacions Mèdiques (IMIM), Barcelona, Spain
| |
Collapse
|
16
|
Haggerty TJ, Dunn IS, Rose LB, Newton EE, Pandolfi F, Kurnick JT. Heat shock protein-90 inhibitors enhance antigen expression on melanomas and increase T cell recognition of tumor cells. PLoS One 2014; 9:e114506. [PMID: 25503774 PMCID: PMC4264751 DOI: 10.1371/journal.pone.0114506] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 11/10/2014] [Indexed: 12/23/2022] Open
Abstract
In an effort to enhance antigen-specific T cell recognition of cancer cells, we have examined numerous modulators of antigen-expression. In this report we demonstrate that twelve different Hsp90 inhibitors (iHsp90) share the ability to increase the expression of differentiation antigens and MHC Class I antigens. These iHsp90 are active in several molecular and cellular assays on a series of tumor cell lines, including eleven human melanomas, a murine B16 melanoma, and two human glioma-derived cell lines. Intra-cytoplasmic antibody staining showed that all of the tested iHsp90 increased expression of the melanocyte differentiation antigens Melan-A/MART-1, gp100, and TRP-2, as well as MHC Class I. The gliomas showed enhanced gp100 and MHC staining. Quantitative analysis of mRNA levels showed a parallel increase in message transcription, and a reporter assay shows induction of promoter activity for Melan-A/MART-1 gene. In addition, iHsp90 increased recognition of tumor cells by T cells specific for Melan-A/MART-1. In contrast to direct Hsp90 client proteins, the increased levels of full-length differentiation antigens that result from iHsp90 treatment are most likely the result of transcriptional activation of their encoding genes. In combination, these results suggest that iHsp90 improve recognition of tumor cells by T cells specific for a melanoma-associated antigen as a result of increasing the expressed intracellular antigen pool available for processing and presentation by MHC Class I, along with increased levels of MHC Class I itself. As these Hsp90 inhibitors do not interfere with T cell function, they could have potential for use in immunotherapy of cancer.
Collapse
Affiliation(s)
- Timothy J. Haggerty
- CytoCure LLC, Suite 430C, 100 Cummings Center, Beverly, MA, United States of America
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Ian S. Dunn
- CytoCure LLC, Suite 430C, 100 Cummings Center, Beverly, MA, United States of America
| | - Lenora B. Rose
- CytoCure LLC, Suite 430C, 100 Cummings Center, Beverly, MA, United States of America
| | - Estelle E. Newton
- CytoCure LLC, Suite 430C, 100 Cummings Center, Beverly, MA, United States of America
| | - Franco Pandolfi
- Department of Internal Medicine, Catholic University, Rome, Italy
- * E-mail:
| | - James T. Kurnick
- CytoCure LLC, Suite 430C, 100 Cummings Center, Beverly, MA, United States of America
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
17
|
Potential diagnostic significance of HSP90, ACS/TMS1, and L-plastin in the identification of melanoma. Melanoma Res 2014; 24:535-44. [DOI: 10.1097/cmr.0000000000000115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
18
|
Schowalter MK, Dulmage BO, Ho J, Vu JR, Falo LD, Geskin LJ. Comparative proteomic analysis reveals unique tumor protein composition among the melanoma subtypes pure desmoplastic and superficial spreading. Melanoma Res 2014; 24:397-400. [PMID: 24743055 PMCID: PMC8609475 DOI: 10.1097/cmr.0000000000000070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The U.S. death rate for melanoma has not decreased, despite the use of depth at biopsy and sentinel lymph node status to determine the risk of metastasis. Additional prognostic indicators and therapeutic targets are required, and identification of candidate proteins was the goal of this study. We utilized comparative mass spectrometry to compare five samples of each of two forms of melanoma, pure desmoplastic, which by depth at diagnosis has a favorable prognosis, and superficial spreading. Ontological analysis was applied to identify proteins and networks that were increased in one of the two subtypes. Analysis revealed a protein signature increase in pure desmoplastic melanoma associated with cell-to-cell binding and a signature increase in superficial spreading melanoma responsible for the cellular stress response including a constellation of heat shock proteins. The two subtypes of melanoma compared in this study have two unique protein compositions that correlate with their phenotypes. Further validation studies are warranted to evaluate the utility of identified proteins as prognostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Michael K Schowalter
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
19
|
Boone BA, Lotze MT. Targeting damage-associated molecular pattern molecules (DAMPs) and DAMP receptors in melanoma. Methods Mol Biol 2014; 1102:537-52. [PMID: 24258998 DOI: 10.1007/978-1-62703-727-3_29] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Damage-associated molecular pattern molecules (DAMPs) are proteins released from cells under stress due to nutrient deprivation, hypoxia, trauma, or treatment with chemotherapy, among a variety of other causes. When released, DAMPs activate innate immunity, providing a pathway to a systemic inflammatory response in the absence of infection. By regulating inflammation in the tumor microenvironment, promoting angiogenesis, and increasing autophagy with evasion of apoptosis, DAMPs facilitate cancer growth. DAMPs and DAMP receptors have a key role in melanoma pathogenesis. Due to their crucial role in the development of melanoma and chemoresistance, DAMPs represent intriguing targets at a time when novel treatments are desperately needed.
Collapse
Affiliation(s)
- Brian A Boone
- Department of Surgery, Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | | |
Collapse
|