1
|
Iba T, Kondo Y, Maier CL, Helms J, Ferrer R, Levy JH. Impact of hyper- and hypothermia on cellular and whole-body physiology. J Intensive Care 2025; 13:4. [PMID: 39806520 PMCID: PMC11727703 DOI: 10.1186/s40560-024-00774-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/27/2024] [Indexed: 01/16/2025] Open
Abstract
The incidence of heat-related illnesses and heatstroke continues to rise amidst global warming. Hyperthermia triggers inflammation, coagulation, and progressive multiorgan dysfunction, and, at levels above 40 °C, can even lead to cell death. Blood cells, particularly granulocytes and platelets, are highly sensitive to heat, which promotes proinflammatory and procoagulant changes. Key factors in heatstroke pathophysiology involve mitochondrial thermal damage and excessive oxidative stress, which drive apoptosis and necrosis. While the kinetics of cellular damage from heat have been extensively studied, the mechanisms driving heat-induced organ damage and death are not yet fully understood. Converse to hyperthermia, hypothermia is generally protective, as seen in therapeutic hypothermia. However, accidental hypothermia presents another environmental threat due to arrhythmias, cardiac arrest, and coagulopathy. From a cellular physiology perspective, hypothermia generally supports mitochondrial homeostasis and enhances cell preservation, aiding whole-body recovery following resuscitation. This review summarizes recent findings on temperature-related cellular damage and preservation and suggests future research directions for understanding the tempo-physiologic axis.
Collapse
Affiliation(s)
- Toshiaki Iba
- Department of Emergency and Disaster Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo Bunkyo-Ku, Tokyo, 113-8421, Japan.
| | - Yutaka Kondo
- Department of Emergency and Disaster Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Cheryl L Maier
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Julie Helms
- Strasbourg University (UNISTRA), Strasbourg University Hospital, Medical Intensive Care Unit-NHC; INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Strasbourg, France
| | - Ricard Ferrer
- Intensive Care Department, Hospital Universitari Vall d'Hebron Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jerrold H Levy
- Department of Anesthesiology, Critical Care, and Surgery, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
2
|
Zhou X, Wei C, Chen Z, Xia X, Wang L, Li X. Potential mechanisms of ischemic stroke induced by heat exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175815. [PMID: 39197783 DOI: 10.1016/j.scitotenv.2024.175815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/04/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024]
Abstract
Recent decades of epidemiological and clinical research have suggested that heat exposure could be a potential risk factor for ischemic stroke. Despite climate factors having a minor impact on individuals compared with established risk factors such as smoking, their widespread and persistent effects significantly affect public health. The mechanisms by which heat exposure triggers ischemic stroke are currently unclear. However, several potential mechanisms, such as the impact of temperature variability on stroke risk factors, inflammation, oxidative stress, and coagulation system changes, have been proposed. This article details the potential mechanisms by which heat exposure may induce ischemic stroke, aiming to guide the prevention and treatment of high-risk groups in hot climates and support public health policy development.
Collapse
Affiliation(s)
- Xiao Zhou
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Chanjuan Wei
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhuangzhuang Chen
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xiaoshuang Xia
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Lin Wang
- Department of Geriatrics, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xin Li
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China; Department of Geriatrics, The Second Hospital of Tianjin Medical University, Tianjin, China.
| |
Collapse
|
3
|
Garcia CK, Robinson GP, Gambino BJ, Rua MT, Laitano O, Clanton TL. The impact of castration on physiological responses to exertional heat stroke in mice. PLoS One 2022; 17:e0275715. [PMID: 36227921 PMCID: PMC9560521 DOI: 10.1371/journal.pone.0275715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/22/2022] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION The capability of male mice to exercise in hot environments without succumbing to exertional heat stroke (EHS) is markedly blunted compared to females. Epidemiological evidence in humans and other mammals also suggests some degree of greater vulnerability to heat stroke in males compared to females. The origins of these differences are unknown, but testosterone has previously been shown to induce faster elevations in core temperature during acute, passive heat exposure. In this study, we tested the hypothesis that loss of testosterone and related sex hormones through castration would improve the performance and heat tolerance of male mice during EHS exposure. METHODS Twenty-four male mice were randomly divided into 3 groups, untreated EHS mice (SHAM-EHS), castrated EHS mice (CAS+EHS) and naïve exercise controls (NAIVE). Exercise performance and physiological responses in the heat were monitored during EHS and early recovery. Two weeks later, blood and tissues were collected and analyzed for biomarkers of cardiac damage and testosterone. RESULTS Core temperature in CAS+EHS rose faster to 39.5°C in the early stages of the EHS trial (P<0.0001). However, both EHS groups ran similar distances, exhibited similar peak core temperatures and achieved similar exercise times in the heat, prior to symptom limitation (unconsciousness). CAS+EHS mice had ~10.5% lower body mass at the time of EHS, but this provided no apparent advantage in performance. There was no evidence of myocardial damage in any group, and testosterone levels were undetectable in CAS+EHS after gonadectomy. CONCLUSIONS The results of these experiments exclude the hypothesis that reduced performance of male mice during EHS trials is due to the effects of male sex hormones or intact gonads. However, the results are consistent with a role of male sex hormones or intact gonads in suppressing the early and rapid rise in core temperature during the early stages of exercise in the heat.
Collapse
Affiliation(s)
- Christian K. Garcia
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States of America
| | - Gerard P. Robinson
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States of America
| | - Bryce J. Gambino
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States of America
| | - Michael T. Rua
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States of America
| | - Orlando Laitano
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States of America
| | - Thomas L. Clanton
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States of America
- * E-mail:
| |
Collapse
|
4
|
Schlader ZJ, Davis MS, Bouchama A. Biomarkers of heatstroke-induced organ injury and repair. Exp Physiol 2022; 107:1159-1171. [PMID: 35654394 PMCID: PMC9529995 DOI: 10.1113/ep090142] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/19/2022] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the topic of this review? The status and potential role of novel biological markers (biomarkers) that can help identify the patients at risk of organ injury or long-term complications following heatstroke. What advances does it highlight? Numerous biomarkers were identified related to many aspects of generalized heatstroke-induced cellular injury and tissue damage, and heatstroke-provoked cardiovascular, renal, cerebral, intestinal and skeletal muscle injury. No novel biomarkers were identified for liver or lung injury. ABSTRACT Classic and exertional heatstroke cause acute injury and damage across numerous organ systems. Moreover, heatstroke survivors may sustain long-term neurological, cardiovascular and renal complications with a persistent risk of death. In this context, biomarkers, defined as biological samples obtained from heatstroke patients, are needed to detect early organ injury, and predict outcomes to develop novel organ preservation therapeutic strategies. This narrative review provides preliminary insights that will guide the development and future utilization of these biomarkers. To this end, we have identified numerous biomarkers of widespread heatstroke-associated cellular injury, tissue damage and repair (extracellular heat shock proteins 72 and 60, high mobility group box protein 1, histone H3, and interleukin-1α), and other organ-specific biomarkers including those related to the cardiovascular system (cardiac troponin I, endothelium-derived factors, circulation endothelial cells, adhesion molecules, thrombomodulin and von Willebrand factor antigen), the kidneys (plasma and urinary neutrophil gelatinase-associated lipocalin), the intestines (intestinal fatty acid-binding protein 2), the brain (serum S100β and neuron-specific enolase) and skeletal muscle (creatine kinase, myoglobin). No specific biomarkers have been identified so far for liver or lung injury in heatstroke. Before translating the identified biomarkers into clinical practice, additional preclinical and clinical prospective studies are required to further understand their clinical utility, particularly for the biomarkers related to long-term post-heatstroke health outcomes.
Collapse
Affiliation(s)
- Zachary J. Schlader
- Department of Kinesiology, School of Public Health, Indiana University, Bloomington, IN, USA
| | - Michael S. Davis
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA
| | - Abderrezak Bouchama
- Department of Experimental Medicine, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard — Health Affairs, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Caldas GG, da Silva DOB, Junior DB. Heat stroke in dogs: Literature review. VET MED-CZECH 2022; 67:354-364. [PMID: 39100130 PMCID: PMC11295878 DOI: 10.17221/144/2021-vetmed] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/16/2022] [Indexed: 08/06/2024] Open
Abstract
Heat stroke is a clinical emergency secondary to a severe temperature increase due to the inefficiencies of heat dissipation mechanisms, causing central nervous system dysfunctions, which may lead to multiple organ dysfunction syndrome. Heat disturbances can be classified as "classic" or "exertional" ones and several predisposing factors are involved in their development. This review provides a broad approach to the pathophysiological mechanisms of this syndrome, and the diagnostic and treatment methods to facilitate their approach in clinical routine and increase the survival rate of patients.
Collapse
Affiliation(s)
| | | | - Durval Barauna Junior
- Veterinary Hospital of the Federal University San Francisco Valley, Petrolina, Brazil
| |
Collapse
|
6
|
Hall EJ, Carter AJ, O’Neill DG. Dogs Don't Die Just in Hot Cars-Exertional Heat-Related Illness (Heatstroke) Is a Greater Threat to UK Dogs. Animals (Basel) 2020; 10:E1324. [PMID: 32751913 PMCID: PMC7459873 DOI: 10.3390/ani10081324] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/21/2022] Open
Abstract
Heat-related illness will affect increasing numbers of dogs as global temperatures rise unless effective mitigation strategies are implemented. This study aimed to identify the key triggers of heat-related illness in dogs and investigate canine risk factors for the most common triggers in UK dogs. Using the VetCompassTM programme, de-identified electronic patient records of 905,543 dogs under primary veterinary care in 2016 were reviewed to identify 1259 heat-related illness events from 1222 dogs. Exertional heat-related illness was the predominant trigger (74.2% of events), followed by environmental (12.9%) and vehicular confinement (5.2%). Canine and human risk factors appear similar; young male dogs had greater odds of exertional heat-related illness, older dogs and dogs with respiratory compromise had the greatest odds of environmental heat-related illness. Brachycephalic dogs had greater odds of all three types of heat-related illness compared with mesocephalic dogs. The odds of death following vehicular heat-related illness (OR 1.47, p = 0.492) was similar to that of exertional heat-related illness. In the UK, exertional heat-related illness affects more dogs, and kills more dogs, than confinement in a hot vehicle. Campaigns to raise public awareness about heat-related illness in dogs need to highlight that dogs don't die just in hot cars.
Collapse
Affiliation(s)
- Emily J. Hall
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Brackenhurst, Southwell, Notts NG25 0QF, UK;
| | - Anne J. Carter
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Brackenhurst, Southwell, Notts NG25 0QF, UK;
| | - Dan G. O’Neill
- Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts AL9 7TA, UK;
| |
Collapse
|
7
|
Perioperative urinary heat shock protein 72 as an early marker of acute kidney injury in dogs. Vet Anaesth Analg 2019; 47:53-60. [PMID: 31761601 DOI: 10.1016/j.vaa.2019.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/31/2019] [Accepted: 09/15/2019] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Acute kidney injury (AKI) may be a complication in dogs undergoing surgery. Urinary heat shock protein 72 (uHSP72) is a sensitive biomarker of canine AKI. To assess the occurrence of perioperative AKI, based on uHSP72 compared with serum creatinine (sCr), and whether its occurrence is associated with the American Society of Anesthesiology physical status (ASA status). STUDY DESIGN Clinical prospective study. ANIMALS A total of 80 client-owned and shelter dogs. METHODS Dogs scheduled for elective or emergency surgery were assigned ASA status (ASA I-IV). Preoperative and 24 hour postoperative serum and urine samples were collected. sCr, uHSP72 and urinary creatinine (uCr) were measured. RESULTS Postoperative uHSP72/uCr concentration [median (range)] of all dogs undergoing surgery [2.40 (0.14-252) ng mg-1] was significantly increased compared with preoperative uHSP72/uCr [1.30 (0.11-142) ng mg-1] concentration (p < 0.001). Conversely, postoperative sCr concentration of all dogs [0.88 (0.3-1.6) mg dL-1] significantly decreased compared with preoperative sCr concentration [0.8 (0.2-5.0) mg dL-1; p = 0.001]. Median uHSP72/uCr concentration differed both preoperatively (p = 0.007) and postoperatively (p = 0.019) among the ASA status groups. Increased uHSP/uCr was measured in 20 dogs preoperatively and 33 dogs postoperatively, whereas only five dogs fulfilled the criteria of AKI based on sCr. CONCLUSIONS The occurrence of increased uHSP72/uCr perioperatively suggests that the proportion of dogs with AKI is considerably higher than perceived. CLINICAL RELEVANCE Dogs undergoing surgery should be closely monitored for AKI before and after anesthesia, using currently available markers (e.g., sCr) and more sensitive markers.
Collapse
|
8
|
Bruchim Y, Aroch I, Nivy R, Baruch S, Abbas A, Frank I, Fishelson Y, Codner C, Horowitz M. Impacts of previous heatstroke history on physiological parameters eHSP72 and biomarkers of oxidative stress in military working dogs. Cell Stress Chaperones 2019; 24:937-946. [PMID: 31402428 PMCID: PMC6717235 DOI: 10.1007/s12192-019-01020-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/02/2019] [Accepted: 07/05/2019] [Indexed: 01/15/2023] Open
Abstract
Heatstroke (HS) is an acute, progressive life-threatening emergency. Animals, including military working dogs (IDFMWD), rapidly activate cytoprotective processes, e.g., heat shock proteins (HSPs) and antioxidative molecules, in response to heat stress. We hypothesized that serum HSPs (eHSP72) and oxidative stress markers would differ in IDFMWD with a history of HS compared with controls and thus could be used to detect susceptibility to recurrent HS. eHSPs concentration, oxidative stress markers, and systemic physiological parameters were studied in dogs with and without histories of HS, undergoing indoor or outdoor training. Treadmill physical performance tests (PPTs) were conducted indoors at 22 °C (groups C-I and HS-I) or outdoors under heat stress conditions of 36 °C; 60% humidity (groups C-O and HS-O). Pre-, immediately post-, and 45 min post-PPT heart rate (HR), respiratory rate, and rectal temperature (Tre) were recorded in all dogs. Likewise, blood samples were collected and eHSP72, venous blood gas analysis, and lactate and creatine kinase activity (CK) were assayed. Serum uric acid (sUA) and total serum redox potential (TRP) were measured only in the indoor group. Immediately post-PPT under both environmental conditions, Tre, HR, eHSP, sUA, and TRP (only measured in indoor PPT) significantly (P < 0.05) increased, whereas venous blood pH and bicarbonate decreased significantly (P < 0.05). Between groups comparisons demonstrated significant differences in basal HR and post-PPT Tre immediately after outdoor PPT. eHSP72 induction, CK, sUA, and serum TRP remained significantly higher in the HS group during post-PPT recovery. Taken together, animals with a history of HS have different results, and this signature of previous HS may predict altered heat sensitivity.
Collapse
Affiliation(s)
- Yaron Bruchim
- The Hebrew University Veterinary Teaching Hospital, Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
- Laboratory of Environmental Physiology, Faculty of Dentistry, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Itamar Aroch
- The Hebrew University Veterinary Teaching Hospital, Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ran Nivy
- The Hebrew University Veterinary Teaching Hospital, Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shelly Baruch
- The Hebrew University Veterinary Teaching Hospital, Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Atallah Abbas
- Laboratory of Environmental Physiology, Faculty of Dentistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ilan Frank
- Israel Defense Force Military Working Dog Unit, Jerusalem, Israel
| | - Yuval Fishelson
- Israel Defense Force Military Working Dog Unit, Jerusalem, Israel
| | - Carolina Codner
- The Hebrew University Veterinary Teaching Hospital, Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michal Horowitz
- Laboratory of Environmental Physiology, Faculty of Dentistry, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
9
|
Lenchner I, Segev G, Ari TB, Kohen R, Sirota R, Bruchim Y. Serial evaluation of serum total reduction power potential by cyclic voltammetry in 30 dogs with gastric dilatation and volvulus- a randomised, controlled (lidocaine vs placebo), clinical trial. Res Vet Sci 2017; 117:92-96. [PMID: 29202314 DOI: 10.1016/j.rvsc.2017.11.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 07/25/2017] [Accepted: 11/26/2017] [Indexed: 10/18/2022]
Affiliation(s)
- Itzik Lenchner
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel.
| | - Gilad Segev
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
| | - Tomer Ben Ari
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
| | - Ron Kohen
- Department of Pharmaceutics, School of Pharmacy, The Hebrew University of Jerusalem, P.O. Box 12065, Jerusalem 91120, Israel
| | - Roman Sirota
- Department of Pharmaceutics, School of Pharmacy, The Hebrew University of Jerusalem, P.O. Box 12065, Jerusalem 91120, Israel
| | - Yaron Bruchim
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
| |
Collapse
|
10
|
Bruchim Y, Ginsburg I, Segev G, Mreisat A, Avital Y, Aroch I, Horowitz M. Serum histones as biomarkers of the severity of heatstroke in dogs. Cell Stress Chaperones 2017; 22:903-910. [PMID: 28643239 PMCID: PMC5655374 DOI: 10.1007/s12192-017-0817-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 05/04/2017] [Accepted: 05/31/2017] [Indexed: 02/06/2023] Open
Abstract
Heatstroke is associated with systemic inflammatory response syndrome, leading to multiple organ dysfunction and death. Currently, there is no specific treatment decreasing hyperthermia-induced inflammatory/hemostatic derangements. Emerging studies indicate that histones leaking from damaged cells into the extracellular space are toxic, pro-inflammatory, and pro-thrombotic. We therefore hypothesize that serum histones (sHs) are elevated during heatstroke and are associated with the severity of the disease. Sixteen dogs with heatstroke and seven healthy controls were included in the study. Median serum histones (sHs) upon admission in dogs with heatstroke were significantly higher (P = 0.043) compared to that in seven controls (13.2 vs. 7.3 ng/mL, respectively). sHs level was significantly higher among non-survivors and among dogs with severe hemostatic derangement (P = 0.049, median 21.4 ng/mL vs. median 8.16 ng/mL and P = 0.038, 19.0 vs. 7.0 ng/mL, respectively). There were significant positive correlation between sHs and urea (r = 0.8, P = 0.02); total CO2 (r = 0.661, P = 0.05); CK (r = 0.678, P = 0.04); and prothrombin time (PT) 12 h post presentation (r = 0.888, P = 0.04). The significant positive correlation between sHs and other heatstroke severity biomarkers, and significant increase among severely affected dogs, implies its role in inflammation/oxidation/coagulation during heatstroke. sHs, unlike other prognostic and severity biomarkers in heatstroke, can be pharmacologically manipulated, offering a potential therapeutic target.
Collapse
Affiliation(s)
- Yaron Bruchim
- Department of Small Animal Emergency and Critical Care, Veterinary Teaching Hospital, Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Isaac Ginsburg
- Faculty of Dental Medicine, Institute for Dental Sciences, Hebrew University, Hadassah Medical Center, Jerusalem, Israel
| | - Gilad Segev
- Department of Small Animal Emergency and Critical Care, Veterinary Teaching Hospital, Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ahmad Mreisat
- Laboratory of Environmental Physiology, Hadassah Medical Center, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yochai Avital
- Department of Small Animal Emergency and Critical Care, Veterinary Teaching Hospital, Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Itamar Aroch
- Department of Small Animal Emergency and Critical Care, Veterinary Teaching Hospital, Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michal Horowitz
- Laboratory of Environmental Physiology, Hadassah Medical Center, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
11
|
Bruchim Y, Horowitz M, Aroch I. Pathophysiology of heatstroke in dogs - revisited. Temperature (Austin) 2017; 4:356-370. [PMID: 29435477 PMCID: PMC5800390 DOI: 10.1080/23328940.2017.1367457] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 01/09/2023] Open
Abstract
Heatstroke results from a failure to dissipate accumulated heat during exposure to hot environments, or during strenuous physical exercise under heat stress. It is characterized by core body temperatures > 41°C, with central nervous system dysfunction. Functional morphology and thermoregulatory effectors differences between dogs and humans may require special heatstroke protective adaptations in dogs, however, the risk factors for developing heatstroke are similar in both. In dogs, these include hot, especially highly humid environments, excessive physical activity, obesity, large (>15 kg) body weight, being of certain breed (e.g., Labrador retrievers and brachycephalic breeds), upper airway obstruction and prolonged seizures. Lack of acclimation to heat and physical fitness decreases the survival of heat stroked dogs. At the systemic level, blood pooling within the large internal organs (e.g., spleen, liver) is a major contributor to the development of shock and consequent intestinal ischemia, hypoxia and endothelial hyperpermeability, commonly occurring in heatstroke patients. Evoked serious complications include rhabdomyolysis, acute kidney injury, acute respiratory distress syndrome and ultimately, sepsis and disseminated intravascular coagulation. The most common clinical signs in dogs include acute collapse, tachypnea, spontaneous bleeding, shock signs and mental abnormalities, including depression, disorientation or delirium, seizures, stupor and coma. In such dogs, presence of peripheral blood nucleated red blood cells uniquely occurs, and is a highly sensitive diagnostic and prognostic biomarker. Despite early, appropriate body cooling, and intensive supportive treatment, with no available specific treatment to ameliorate the severe inflammatory and hemostatic derangements, the mortality rate is around 50%, similar to that of human heatstroke victims. This review discusses the pathophysiology of canine heatstroke from a veterinarian's point of view, integrating new and old studies and knowledge.
Collapse
Affiliation(s)
- Yaron Bruchim
- The Hebrew University Veterinary Teaching Hospital and Koret School of Veterinary Medicine, The Hebrew University of Jerusalem
- Laboratory of Environmental Physiology, Hadassah Medical Center, The Hebrew University of Jerusalem
| | - Michal Horowitz
- Laboratory of Environmental Physiology, Hadassah Medical Center, The Hebrew University of Jerusalem
| | - Itamar Aroch
- The Hebrew University Veterinary Teaching Hospital and Koret School of Veterinary Medicine, The Hebrew University of Jerusalem
| |
Collapse
|
12
|
Heat stress-induced neuroinflammation and aberration in monoamine levels in hypothalamus are associated with temperature dysregulation. Neuroscience 2017; 358:79-92. [DOI: 10.1016/j.neuroscience.2017.06.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/04/2017] [Accepted: 06/19/2017] [Indexed: 12/22/2022]
|
13
|
Bruchim Y, Avital Y, Horowitz M, Mazaki-Tovi M, Aroch I, Segev G. Urinary heat shock protein 72 as a biomarker of acute kidney injury in dogs. Vet J 2017; 225:32-34. [PMID: 28720296 DOI: 10.1016/j.tvjl.2017.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 04/13/2017] [Accepted: 04/15/2017] [Indexed: 01/30/2023]
Abstract
Early recognition of acute kidney injury (AKI) is important, as therapy is potentially more efficacious if instituted early in the course of disease. Urinary heat shock protein-72 to urinary creatinine ratio (uHSP72/uCr) was assessed as a diagnostic and prognostic marker in AKI in dogs. Fifty-three dogs were enrolled in five groups: healthy controls (n=11), urinary tract infection (n=10), chronic kidney disease (CKD; n=11), AKI (n=13), and acute decompensating CKD (n=8). Urinary heat shock protein-72 to urinary creatinine ratio was highest in the AKI group (P<0.001 when compared to the control and urinary tract infection groups, individually; P>0.05 compared to each of the other two groups). The area under the curve (AUC) for the receiver operator characteristic (ROC) analysis of uHSP72/uCr to predict AKI, compared to the control group, was 0.97. A cutoff value of 0.20ng/mg corresponded to sensitivity and specificity of 100% and 82%, respectively. Urinary heat shock protein-72 to urinary creatinine ratio was significantly lower in dogs categorized as survivors vs. non-survivors of AKI; ROC AUC, 0.91 (95% confidence intervals, 0.74-1.0). Urinary heat shock protein-72 to urinary creatinine ratio is a potentially useful diagnostic and prognostic biomarker of AKI in dogs.
Collapse
Affiliation(s)
- Yaron Bruchim
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Israel
| | - Yochai Avital
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Israel
| | - Michal Horowitz
- Laboratory of Environmental Physiology, Hadassah Medical Center, The Hebrew University of Jerusalem, Israel
| | - Michal Mazaki-Tovi
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Israel
| | - Itamar Aroch
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Israel
| | - Gilad Segev
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|