1
|
Functional and Conformational Plasticity of an Animal Group 1 LEA Protein. Biomolecules 2022; 12:biom12030425. [PMID: 35327618 PMCID: PMC8946055 DOI: 10.3390/biom12030425] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 12/24/2022] Open
Abstract
Group 1 (Dur-19, PF00477, LEA_5) Late Embryogenesis Abundant (LEA) proteins are present in organisms from all three domains of life, Archaea, Bacteria, and Eukarya. Surprisingly, Artemia is the only genus known to include animals that express group 1 LEA proteins in their desiccation-tolerant life-history stages. Bioinformatics analysis of circular dichroism data indicates that the group 1 LEA protein AfLEA1 is surprisingly ordered in the hydrated state and undergoes during desiccation one of the most pronounced disorder-to-order transitions described for LEA proteins from A. franciscana. The secondary structure in the hydrated state is dominated by random coils (42%) and β-sheets (35%) but converts to predominately α-helices (85%) when desiccated. Interestingly, AfLEA1 interacts with other proteins and nucleic acids, and RNA promotes liquid–liquid phase separation (LLPS) of the protein from the solvent during dehydration in vitro. Furthermore, AfLEA1 protects the enzyme lactate dehydrogenase (LDH) during desiccation but does not aid in restoring LDH activity after desiccation-induced inactivation. Ectopically expressed in D. melanogaster Kc167 cells, AfLEA1 localizes predominantly to the cytosol and increases the cytosolic viscosity during desiccation compared to untransfected control cells. Furthermore, the protein formed small biomolecular condensates in the cytoplasm of about 38% of Kc167 cells. These findings provide additional evidence for the hypothesis that the formation of biomolecular condensates to promote water stress tolerance during anhydrobiosis may be a shared feature across several groups of LEA proteins that display LLPS behaviors.
Collapse
|
2
|
Chen B, Chu TW, Chiu K, Hong MC, Wu TM, Ma JW, Liang CM, Wang WK. Transcriptomic analysis elucidates the molecular processes associated with hydrogen peroxide-induced diapause termination in Artemia-encysted embryos. PLoS One 2021; 16:e0247160. [PMID: 33606769 PMCID: PMC7894940 DOI: 10.1371/journal.pone.0247160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 02/03/2021] [Indexed: 01/06/2023] Open
Abstract
Treatment with hydrogen peroxide (H2O2) raises the hatching rate through the development and diapause termination of Artemia cysts. To comprehend the upstream genetic regulation of diapause termination activated by exterior H2O2 elements, an Illumina RNA-seq analysis was performed to recognize and assess comparative transcript amounts to explore the genetic regulation of H2O2 in starting the diapause termination of cysts in Artemia salina. We examined three groupings treated with no H2O2 (control), 180 μM H2O2 (low) and 1800 μM H2O2 (high). The results showed a total of 114,057 unigenes were identified, 41.22% of which were functionally annotated in at least one particular database. When compared to control group, 34 and 98 differentially expressed genes (DEGs) were upregulated in 180 μM and 1800 μM H2O2 treatments, respectively. On the other hand, 162 and 30 DEGs were downregulated in the 180 μM and 1800 μM H2O2 treatments, respectively. Cluster analysis of DEGs demonstrated significant patterns among these types of 3 groups. GO and KEGG enrichment analysis showed the DEGs involved in the regulation of blood coagulation (GO: 0030193; GO: 0050818), regulation of wound healing (GO:0061041), regulation of hemostasis (GO: 1900046), antigen processing and presentation (KO04612), the Hippo signaling pathway (KO04391), as well as the MAPK signaling pathway (KO04010). This research helped to define the diapause-related transcriptomes of Artemia cysts using RNA-seq technology, which might fill up a gap in the prevailing body of knowledge.
Collapse
Affiliation(s)
- Bonien Chen
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Tah-Wei Chu
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Kuohsun Chiu
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
- Department of Oceanography, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ming-Chang Hong
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Tsung-Meng Wu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Jui-Wen Ma
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Chih-Ming Liang
- Department of Environmental Engineering and Science, Feng Chia University, Taichung, Taiwan
| | - Wei-Kuang Wang
- Department of Environmental Engineering and Science, Feng Chia University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
3
|
Anderson JM, Hand SC. Transgenic expression of late embryogenesis abundant proteins improves tolerance to water stress in Drosophila melanogaster. J Exp Biol 2021; 224:jeb.238204. [PMID: 33431592 DOI: 10.1242/jeb.238204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/29/2020] [Indexed: 11/20/2022]
Abstract
Four lines of Drosophila melanogaster were created that expressed transgenes encoding selected late embryogenesis abundant (LEA) proteins originally identified in embryos of the anhydrobiote Artemia franciscana The overall aim was to extend our understanding of the protective properties of LEA proteins documented with isolated cells to a desiccation-sensitive organism during exposure to drying and hyperosmotic stress. Embryos of D. melanogaster were dried at 57% relative humidity to promote a loss of 80% tissue water and then rehydrated. Embryos that expressed AfrLEA2 or AfrLEA3m eclosed 2 days earlier than wild-type embryos or embryos expressing green fluorescent protein (Gal4GFP control). For the third instar larval stage, all Afrlea lines and Gal4GFP controls experienced substantial drops in survivorship as desiccation proceeded. When results for all Afrlea lines were combined, Kaplan-Meier survival curves indicated a significant improvement in survivorship in fly lines expressing AfrLEA proteins compared with Gal4GFP controls. The percent water lost at the LT50 (lethal time for 50% mortality) for the AfrLEA lines was 78% versus 52% for Gal4GFP controls. Finally, offspring of fly lines that expressed AfrLEA2, AfrLEA3m or AfrLEA6 exhibited significantly greater success in reaching pupation, compared with wild-type flies, when adults were challenged with hyperosmotic stress (NaCl-fortified medium) and progeny forced to develop under these conditions. In conclusion, the gain of function studies reported here show that LEA proteins can improve tolerance to water stress in a desiccation-sensitive species that normally lacks these proteins, and, simultaneously, underscore the complexity of desiccation tolerance across multiple life stages in multicellular organisms.
Collapse
Affiliation(s)
- John M Anderson
- Division of Cellular Developmental and Integrative Biology, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Steven C Hand
- Division of Cellular Developmental and Integrative Biology, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
4
|
Janis B, Uversky VN, Menze MA. Potential functions of LEA proteins from the brine shrimp Artemia franciscana - anhydrobiosis meets bioinformatics. J Biomol Struct Dyn 2017; 36:3291-3309. [PMID: 28971739 DOI: 10.1080/07391102.2017.1387177] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Late embryogenesis abundant (LEA) proteins are a large group of anhydrobiosis-associated intrinsically disordered proteins, which are commonly found in plants and some animals. The brine shrimp Artemia franciscana is the only known animal that expresses LEA proteins from three, and not only one, different groups in its anhydrobiotic life stage. The reason for the higher complexity in the A. franciscana LEA proteome (LEAome), compared with other anhydrobiotic animals, remains mostly unknown. To address this issue, we have employed a suite of bioinformatics tools to evaluate the disorder status of the Artemia LEAome and to analyze the roles of intrinsic disorder in functioning of brine shrimp LEA proteins. We show here that A. franciscana LEA proteins from different groups are more similar to each other than one originally expected, while functional differences among members of group three are possibly larger than commonly anticipated. Our data show that although these proteins are characterized by a large variety of forms and possible functions, as a general strategy, A. franciscana utilizes glassy matrix forming LEAs concurrently with proteins that more readily interact with binding partners. It is likely that the function(s) of both types, the matrix-forming and partner-binding LEA proteins, are regulated by changing water availability during desiccation.
Collapse
Affiliation(s)
- Brett Janis
- a Department of Biology , University of Louisville , Louisville 40292 , KY , USA
| | - Vladimir N Uversky
- b Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine , University of South Florida , Tampa 33612 , FL , USA.,c Institute for Biological Instrumentation , Russian Academy of Sciences , Moscow Region, Pushchino 142290 , Russia
| | - Michael A Menze
- a Department of Biology , University of Louisville , Louisville 40292 , KY , USA
| |
Collapse
|
5
|
Thorat L, Oulkar D, Banerjee K, Gaikwad SM, Nath BB. High-throughput mass spectrometry analysis revealed a role for glucosamine in potentiating recovery following desiccation stress in Chironomus. Sci Rep 2017; 7:3659. [PMID: 28623254 PMCID: PMC5473918 DOI: 10.1038/s41598-017-03572-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 04/26/2017] [Indexed: 12/14/2022] Open
Abstract
Desiccation tolerance is an essential survival trait, especially in tropical aquatic organisms that are vulnerable to severe challenges posed by hydroperiodicity patterns in their habitats, characterized by dehydration-rehydration cycles. Here, we report a novel role for glucosamine as a desiccation stress-responsive metabolite in the underexplored tropical aquatic midge, Chironomus ramosus. Using high- throughput liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QToF-MS) analysis, biochemical assays and gene expression studies, we confirmed that glucosamine was essential during the recovery phase in C. ramosus larvae. Additionally, we demonstrated that trehalose, a known stress-protectant was crucial during desiccation but did not offer any advantage to the larvae during recovery. Based on our findings, we emphasise on the collaborative interplay of glucosamine and trehalose in conferring overall resilience to desiccation stress and propose the involvement of the trehalose-chitin metabolic interface in insects as one of the stress-management strategies to potentiate recovery post desiccation through recruitment of glucosamine.
Collapse
Affiliation(s)
- Leena Thorat
- Stress Biology Research Laboratory, Department of Zoology, Savitribai Phule Pune University, Pune, 411007, India
- Department of Biotechnology, Savitribai Phule Pune University, Pune, 411007, India
| | - Dasharath Oulkar
- National Referral Laboratory, National Research Centre for Grapes, Pune, 412307, India
| | - Kaushik Banerjee
- National Referral Laboratory, National Research Centre for Grapes, Pune, 412307, India
| | - Sushama M Gaikwad
- Division of Biochemical Sciences, National Chemical Laboratory, Pune, 411008, India
| | - Bimalendu B Nath
- Stress Biology Research Laboratory, Department of Zoology, Savitribai Phule Pune University, Pune, 411007, India.
| |
Collapse
|
6
|
Saucedo AL, Hernández-Domínguez EE, de Luna-Valdez LA, Guevara-García AA, Escobedo-Moratilla A, Bojorquéz-Velázquez E, del Río-Portilla F, Fernández-Velasco DA, Barba de la Rosa AP. Insights on Structure and Function of a Late Embryogenesis Abundant Protein from Amaranthus cruentus: An Intrinsically Disordered Protein Involved in Protection against Desiccation, Oxidant Conditions, and Osmotic Stress. FRONTIERS IN PLANT SCIENCE 2017; 8:497. [PMID: 28439280 PMCID: PMC5384071 DOI: 10.3389/fpls.2017.00497] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/22/2017] [Indexed: 05/06/2023]
Abstract
Late embryogenesis abundant (LEA) proteins are part of a large protein family that protect other proteins from aggregation due to desiccation or osmotic stresses. Recently, the Amaranthus cruentus seed proteome was characterized by 2D-PAGE and one highly accumulated protein spot was identified as a LEA protein and was named AcLEA. In this work, AcLEA cDNA was cloned into an expression vector and the recombinant protein was purified and characterized. AcLEA encodes a 172 amino acid polypeptide with a predicted molecular mass of 18.34 kDa and estimated pI of 8.58. Phylogenetic analysis revealed that AcLEA is evolutionarily close to the LEA3 group. Structural characteristics were revealed by nuclear magnetic resonance and circular dichroism methods. We have shown that recombinant AcLEA is an intrinsically disordered protein in solution even at high salinity and osmotic pressures, but it has a strong tendency to take a secondary structure, mainly folded as α-helix, when an inductive additive is present. Recombinant AcLEA function was evaluated using Escherichia coli as in vivo model showing the important protection role against desiccation, oxidant conditions, and osmotic stress. AcLEA recombinant protein was localized in cytoplasm of Nicotiana benthamiana protoplasts and orthologs were detected in seeds of wild and domesticated amaranth species. Interestingly AcLEA was detected in leaves, stems, and roots but only in plants subjected to salt stress. This fact could indicate the important role of AcLEA protection during plant stress in all amaranth species studied.
Collapse
Affiliation(s)
- Alma L. Saucedo
- Department of Molecular Biology, Instituto Potosino de Investigación Científica y Tecnológica, A.C.San Luis Potosí, México
| | - Eric E. Hernández-Domínguez
- Department of Molecular Biology, Instituto Potosino de Investigación Científica y Tecnológica, A.C.San Luis Potosí, México
| | | | | | - Abraham Escobedo-Moratilla
- Department of Molecular Biology, Instituto Potosino de Investigación Científica y Tecnológica, A.C.San Luis Potosí, México
| | - Esaú Bojorquéz-Velázquez
- Department of Molecular Biology, Instituto Potosino de Investigación Científica y Tecnológica, A.C.San Luis Potosí, México
| | | | - Daniel A. Fernández-Velasco
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de MéxicoCiudad de México, México
| | - Ana P. Barba de la Rosa
- Department of Molecular Biology, Instituto Potosino de Investigación Científica y Tecnológica, A.C.San Luis Potosí, México
- *Correspondence: Ana P. Barba de la Rosa,
| |
Collapse
|