1
|
Albinhassan TH, Alharbi BM, AlSuhaibani ES, Mohammad S, Malik SS. Small Heat Shock Proteins: Protein Aggregation Amelioration and Neuro- and Age-Protective Roles. Int J Mol Sci 2025; 26:1525. [PMID: 40003991 PMCID: PMC11855743 DOI: 10.3390/ijms26041525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/27/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
Protein misfolding, aggregation, and aberrant aggregate accumulation play a central role in neurodegenerative disease progression. The proteotoxic factors also govern the aging process to a large extent. Molecular chaperones modulate proteostasis and thereby impact aberrant-protein-induced proteotoxicity. These chaperones have a diverse functional spectrum, including nascent protein folding, misfolded protein sequestration, refolding, or degradation. Small heat shock proteins (sHsps) possess an ATP-independent chaperone-like activity that prevents protein aggregation by keeping target proteins in a folding-competent state to be refolded by ATP-dependent chaperones. Due to their near-universal upregulation and presence in sites of proteotoxic stress like diseased brains, sHsps were considered pathological. However, gene knockdown and overexpression studies have established their protective functions. This review provides an updated overview of the sHsp role in protein aggregation amelioration and highlights evidence for sHsp modulation of neurodegenerative disease-related protein aggregation and aging.
Collapse
Affiliation(s)
- Tahani H. Albinhassan
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia; (T.H.A.); (S.M.)
- Zoology Department, College of Science, King Saud University, Riyadh 12372, Saudi Arabia
| | - Bothina Mohammed Alharbi
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia; (T.H.A.); (S.M.)
| | | | - Sameer Mohammad
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia; (T.H.A.); (S.M.)
| | - Shuja Shafi Malik
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia; (T.H.A.); (S.M.)
| |
Collapse
|
2
|
Lei T, Xiao Z, Bi W, Cai S, Yang Y, Du H. Targeting small heat shock proteins to degrade aggregates as a potential strategy in neurodegenerative diseases. Ageing Res Rev 2022; 82:101769. [PMID: 36283618 DOI: 10.1016/j.arr.2022.101769] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 01/31/2023]
Abstract
Neurodegenerative diseases (NDs) are aging-related diseases that involve the death of neurons in the brain. Dysregulation of protein homeostasis leads to the production of toxic proteins or the formation of aggregates, which is the pathological basis of NDs. Small heat shock proteins (HSPB) is involved in the establishment of a protein quality control (PQC) system to maintain cellular homeostasis. HSPB can be secreted into the extracellular space and delivered by various routes, especially extracellular vehicles (EVs). HSPB plays an important role in influencing the aggregation phase of toxic proteins involved in heat shock transcription factor (HSF) regulation, oxidative stress, autophagy and apoptosis pathways. HSPB conferred neuroprotective effects by resisting toxic protein aggregation, reducing autophagy and reducing neuronal apoptosis. The HSPB treatment strategies, including targeted PQC system therapy and delivery of EVs-HSPB, can improve disease manifestations for NDs. This review aims to provide a comprehensive insight into the impact of HSPB in NDs and the feasibility of new technology to enhance HSPB expression and EVs-HSPB delivery for neurodegenerative disease.
Collapse
Affiliation(s)
- Tong Lei
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhuangzhuang Xiao
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
| | - Wangyu Bi
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
| | - Shanglin Cai
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
| | - Yanjie Yang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
| | - Hongwu Du
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
3
|
Nam MH, Nahomi RB, Pantcheva MB, Dhillon A, Chiodo VA, Smith WC, Nagaraj RH. AAV2-Mediated Expression of HspB1 in RGCs Prevents Somal Damage and Axonal Transport Deficits in a Mouse Model of Ocular Hypertension. Transl Vis Sci Technol 2022; 11:8. [DOI: 10.1167/tvst.11.11.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Mi-Hyun Nam
- Sue Anschutz-Rodgers Eye Center and Department of Ophthalmology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Rooban B. Nahomi
- Sue Anschutz-Rodgers Eye Center and Department of Ophthalmology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Mina B. Pantcheva
- Sue Anschutz-Rodgers Eye Center and Department of Ophthalmology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Armaan Dhillon
- Sue Anschutz-Rodgers Eye Center and Department of Ophthalmology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Vince A. Chiodo
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA
| | - W. Clay Smith
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA
| | - Ram H. Nagaraj
- Sue Anschutz-Rodgers Eye Center and Department of Ophthalmology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
4
|
Sooraj K, Shukla S, Kaur R, Titiyal JS, Kaur J. The protective role of HSP27 in ocular diseases. Mol Biol Rep 2022; 49:5107-5115. [PMID: 35212927 DOI: 10.1007/s11033-022-07222-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 02/02/2022] [Indexed: 10/19/2022]
Abstract
Heat shock proteins (HSPs) are stress-induced proteins that are important constituents of the cell's defense system. The activity of HSPs enhances when the cell undergoes undesirable environmental conditions like stress. The protective roles of HSPs are due to their molecular chaperone and anti-apoptotic functions. HSPs have a central role in the eye, and their malfunction has been associated with the manifestation of ocular diseases. Heat shock protein 27 (HSP27, HSPB1) is present in various ocular tissues, and it has been found to protect the eye from disease states such as retinoblastoma, uveal melanoma, glaucoma, and cataract. But some recent studies have shown the destructive role of HSP27 on retinal ganglionic cells. Thus, this article summarizes the role of heat shock protein 27 in eye and ocular diseases and will focus on the expression, regulation, and function of HSP27 in ocular complications.
Collapse
Affiliation(s)
- K Sooraj
- Department of Ocular Biochemistry, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Swati Shukla
- Department of Ocular Biochemistry, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Ranjeet Kaur
- Department of Ocular Biochemistry, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Jeewan Singh Titiyal
- Department of Ophthalmology, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Jasbir Kaur
- Department of Ocular Biochemistry, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India.
| |
Collapse
|
5
|
Rajeswaren V, Wong JO, Yabroudi D, Nahomi RB, Rankenberg J, Nam MH, Nagaraj RH. Small Heat Shock Proteins in Retinal Diseases. Front Mol Biosci 2022; 9:860375. [PMID: 35480891 PMCID: PMC9035800 DOI: 10.3389/fmolb.2022.860375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/11/2022] [Indexed: 11/29/2022] Open
Abstract
This review summarizes the latest findings on small heat shock proteins (sHsps) in three major retinal diseases: glaucoma, diabetic retinopathy, and age-related macular degeneration. A general description of the structure and major cellular functions of sHsps is provided in the introductory remarks. Their role in specific retinal diseases, highlighting their regulation, role in pathogenesis, and possible use as therapeutics, is discussed.
Collapse
Affiliation(s)
- Vivian Rajeswaren
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, School of Medicine, Aurora, CO, United States
| | - Jeffrey O. Wong
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, School of Medicine, Aurora, CO, United States
| | - Dana Yabroudi
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, School of Medicine, Aurora, CO, United States
| | - Rooban B. Nahomi
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, School of Medicine, Aurora, CO, United States
| | - Johanna Rankenberg
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, School of Medicine, Aurora, CO, United States
| | - Mi-Hyun Nam
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, School of Medicine, Aurora, CO, United States
- *Correspondence: Mi-Hyun Nam, ; Ram H. Nagaraj,
| | - Ram H. Nagaraj
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, School of Medicine, Aurora, CO, United States
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States
- *Correspondence: Mi-Hyun Nam, ; Ram H. Nagaraj,
| |
Collapse
|
6
|
Grotegut P, Hoerdemann PJ, Reinehr S, Gupta N, Dick HB, Joachim SC. Heat Shock Protein 27 Injection Leads to Caspase Activation in the Visual Pathway and Retinal T-Cell Response. Int J Mol Sci 2021; 22:E513. [PMID: 33419223 PMCID: PMC7825587 DOI: 10.3390/ijms22020513] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/21/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022] Open
Abstract
Heat shock protein 27 (HSP27) is one of the small molecular chaperones and is involved in many cell mechanisms. Besides the known protective and helpful functions of intracellular HSP27, very little is known about the mode of action of extracellular HSP27. In a previous study, we showed that intravitreal injection of HSP27 led to neuronal damage in the retina and optic nerve after 21 days. However, it was not clear which degenerative signaling pathways were induced by the injection. For this reason, the pathological mechanisms of intravitreal HSP27 injection after 14 days were investigated. Histological and RT-qPCR analyses revealed an increase in endogenous HSP27 in the retina and an activation of components of the intrinsic and extrinsic apoptosis pathway. In addition, an increase in nucleus factor-kappa-light-chain-enhancer of activated B cells (NFκB), as well as of microglia/macrophages and T-cells could be observed. In the optic nerve, however, only an increased apoptosis rate was detectable. Therefore, the activation of caspases and the induction of an incipient immune response seem to be the main triggers for retinal degeneration in this intravitreal HSP27 model.
Collapse
Affiliation(s)
| | | | | | | | | | - Stephanie C. Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany; (P.G.); (P.J.H.); (S.R.); (N.G.); (H.B.D.)
| |
Collapse
|
7
|
Bartelt-Kirbach B, Wiegreffe C, Birk S, Baur T, Moron M, Britsch S, Golenhofen N. HspB5/αB-crystallin phosphorylation at S45 and S59 is essential for protection of the dendritic tree of rat hippocampal neurons. J Neurochem 2020; 157:2055-2069. [PMID: 33220080 DOI: 10.1111/jnc.15247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/26/2020] [Accepted: 11/18/2020] [Indexed: 12/15/2022]
Abstract
Rarefaction of the dendritic tree leading to neuronal dysfunction is a hallmark of many neurodegenerative diseases and we have shown previously that heat shock protein B5 (HspB5)/αB-crystallin is able to increase dendritic complexity in vitro. The aim of this study was to investigate if this effect is also present in vivo, if HspB5 can counteract dendritic rarefaction under pathophysiological conditions and the impact of phosphorylation of HspB5 in this process. HspB5 and eight mutants inhibiting or mimicking phosphorylation at the three phosphorylation sites serine (S)19, S45, and S59 were over-expressed in cultured rat hippocampal neurons with subsequent investigation of the complexity of the dendritic tree. Sholl analysis revealed significant higher complexity of the dendritic tree after over-expression of wild-type HspB5 and the mutant HspB5-AEE. All other mutants showed no or minor effects. For in vivo investigation in utero electroporation of mouse embryos was applied. At embryonal day E15.5 the respective plasmids were injected, cornu ammonis 1 (CA1) pyramidal cells transfected by electroporation and their basal dendritic trees were analyzed at post-natal day P15. In vivo, HspB5 and HspB5-AEE led to an increase of total dendritic length as well as a higher complexity. Finally, the dendritic effect of HspB5 was investigated under a pathophysiological condition, that is, iron deficiency which reportedly results in dendritic rarefaction. HspB5 and HspB5-AEE but not the non-phosphorylatable mutant HspB5-AAA significantly counteracted the dendritic rarefaction. Thus, our data suggest that up-regulation and selective phosphorylation of HspB5 in neurodegenerative diseases may preserve dendritic morphology and counteract neuronal dysfunction.
Collapse
Affiliation(s)
| | - Christoph Wiegreffe
- Institute of Molecular and Cellular Anatomy, University of Ulm, Ulm, Germany
| | - Samuel Birk
- Institute of Anatomy and Cell Biology, University of Ulm, Ulm, Germany
| | - Tina Baur
- Institute of Anatomy and Cell Biology, University of Ulm, Ulm, Germany
| | - Margarethe Moron
- Institute of Anatomy and Cell Biology, University of Ulm, Ulm, Germany
| | - Stefan Britsch
- Institute of Molecular and Cellular Anatomy, University of Ulm, Ulm, Germany
| | - Nikola Golenhofen
- Institute of Anatomy and Cell Biology, University of Ulm, Ulm, Germany
| |
Collapse
|
8
|
Meng W, Chan BW, Ezeonwumelu C, Hébert HL, Campbell A, Soler V, Palmer CN. A genome-wide association study implicates that the TTC39C gene is associated with diabetic maculopathy with decreased visual acuity. Ophthalmic Genet 2019; 40:252-258. [PMID: 31264924 DOI: 10.1080/13816810.2019.1633549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Background: Diabetic maculopathy is a form of diabetic retinopathy. The visual acuity of one third of patients with diabetic maculopathy will be affected. The purpose of this study was to identify genetic contributors of diabetic maculopathy with decreased visual acuity based on a genome-wide association approach using a well-defined Scottish diabetic cohort. Methods: We used linked e-health records of diabetic patients to define our cases and controls. The cases in this study were defined as type 2 diabetic patients who had ever been recorded in the linked e-health records as having maculopathy (observable or referable) in at least one eye and whose visual acuity of the eye was recorded to have decreased between the first and the last visual acuity record of that eye in the longitudinal e-health records. The controls were defined as a type 2 diabetic individual who had never been diagnosed with maculopathy or retinopathy in the linked e-health records. Anyone who had laser photocoagulation treatment was also excluded from the controls. A standard genome-wide association approach was applied. Results: Overall, we identified 469 cases and 1,374 controls within the Genetics of Diabetes Audit and Research in Tayside Scotland (GoDARTS) dataset. We found that the P value of rs9966620 in the TTC39C gene was 4.13x10-8, which reached genome-wide significance. Conclusions: We suggest that the TTC39C gene is associated with diabetic maculopathy with decreased visual acuity. This needs to be confirmed by further replication studies and functional studies.
Collapse
Affiliation(s)
- Weihua Meng
- a Division of Population Health and Genomics , Medical Research Institute, Ninewells Hospital and School of Medicine, University of Dundee , Dundee , UK
| | - Brian W Chan
- a Division of Population Health and Genomics , Medical Research Institute, Ninewells Hospital and School of Medicine, University of Dundee , Dundee , UK
| | - Chinenyenwa Ezeonwumelu
- a Division of Population Health and Genomics , Medical Research Institute, Ninewells Hospital and School of Medicine, University of Dundee , Dundee , UK
| | - Harry L Hébert
- a Division of Population Health and Genomics , Medical Research Institute, Ninewells Hospital and School of Medicine, University of Dundee , Dundee , UK
| | - Amy Campbell
- a Division of Population Health and Genomics , Medical Research Institute, Ninewells Hospital and School of Medicine, University of Dundee , Dundee , UK
| | - Vencent Soler
- b Retina unit, Ophthalmology department , Hôpital Pierre Paul Riquet, CHU Toulouse, 31059 Toulouse Cedex 9; Unité "Différenciation Epithéliale et Autoimmunité Rhumatoïde", UMR 1056 Inserm - Université de Toulouse , France
| | - Colin Na Palmer
- a Division of Population Health and Genomics , Medical Research Institute, Ninewells Hospital and School of Medicine, University of Dundee , Dundee , UK
| |
Collapse
|
9
|
Ruebsam A, Dulle JE, Myers AM, Sakrikar D, Green KM, Khan NW, Schey K, Fort PE. A specific phosphorylation regulates the protective role of αA-crystallin in diabetes. JCI Insight 2018; 3:97919. [PMID: 29467334 DOI: 10.1172/jci.insight.97919] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/17/2018] [Indexed: 12/19/2022] Open
Abstract
Neurodegeneration is a central aspect of the early stages of diabetic retinopathy, the primary ocular complication associated with diabetes. While progress has been made to improve the vascular perturbations associated with diabetic retinopathy, there are still no treatment options to counteract the neuroretinal degeneration associated with diabetes. Our previous work suggested that the molecular chaperones α-crystallins could be involved in the pathophysiology of diabetic retinopathy; however, the role and regulation of α-crystallins remained unknown. In the present study, we demonstrated the neuroprotective role of αA-crystallin during diabetes and its regulation by its phosphorylation on residue 148. We further characterized the dual role of αA-crystallin in neurons and glia, its essential role for neuronal survival, and its direct dependence on phosphorylation on this residue. These findings support further evaluation of αA-crystallin as a treatment option to promote neuron survival in diabetic retinopathy and neurodegenerative diseases in general.
Collapse
Affiliation(s)
- Anne Ruebsam
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Jennifer E Dulle
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Angela M Myers
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Katelyn M Green
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Naheed W Khan
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Kevin Schey
- Department of Biochemistry and Ophthalmology and Visual Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Patrice E Fort
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, USA.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
10
|
Carra S, Alberti S, Arrigo PA, Benesch JL, Benjamin IJ, Boelens W, Bartelt-Kirbach B, Brundel BJJM, Buchner J, Bukau B, Carver JA, Ecroyd H, Emanuelsson C, Finet S, Golenhofen N, Goloubinoff P, Gusev N, Haslbeck M, Hightower LE, Kampinga HH, Klevit RE, Liberek K, Mchaourab HS, McMenimen KA, Poletti A, Quinlan R, Strelkov SV, Toth ME, Vierling E, Tanguay RM. The growing world of small heat shock proteins: from structure to functions. Cell Stress Chaperones 2017; 22:601-611. [PMID: 28364346 PMCID: PMC5465036 DOI: 10.1007/s12192-017-0787-8] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2017] [Indexed: 12/21/2022] Open
Abstract
Small heat shock proteins (sHSPs) are present in all kingdoms of life and play fundamental roles in cell biology. sHSPs are key components of the cellular protein quality control system, acting as the first line of defense against conditions that affect protein homeostasis and proteome stability, from bacteria to plants to humans. sHSPs have the ability to bind to a large subset of substrates and to maintain them in a state competent for refolding or clearance with the assistance of the HSP70 machinery. sHSPs participate in a number of biological processes, from the cell cycle, to cell differentiation, from adaptation to stressful conditions, to apoptosis, and, even, to the transformation of a cell into a malignant state. As a consequence, sHSP malfunction has been implicated in abnormal placental development and preterm deliveries, in the prognosis of several types of cancer, and in the development of neurological diseases. Moreover, mutations in the genes encoding several mammalian sHSPs result in neurological, muscular, or cardiac age-related diseases in humans. Loss of protein homeostasis due to protein aggregation is typical of many age-related neurodegenerative and neuromuscular diseases. In light of the role of sHSPs in the clearance of un/misfolded aggregation-prone substrates, pharmacological modulation of sHSP expression or function and rescue of defective sHSPs represent possible routes to alleviate or cure protein conformation diseases. Here, we report the latest news and views on sHSPs discussed by many of the world's experts in the sHSP field during a dedicated workshop organized in Italy (Bertinoro, CEUB, October 12-15, 2016).
Collapse
Affiliation(s)
- Serena Carra
- Department of Biomedical, Metabolic and Neural Sciences, and Centre for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, via G. Campi 287, 41125 Modena, Italy
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Patrick A. Arrigo
- Université de Lyon, 69622 Lyon, France
- CNRS, UMR 5310, INSERM U1217, Institut NeuroMyoGène, Université Lyon 1, 69100 Villeurbanne, France
| | | | - Ivor J. Benjamin
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112-5650 USA
| | - Wilbert Boelens
- Biomolecular Chemistry, 284, Radboud University, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | - Bianca J. J. M. Brundel
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Bernd Bukau
- Center for Molecular Biology of the University of Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - John A. Carver
- The Research School of Chemistry, The Australian National University, Acton, ACT 2601 Australia
| | - Heath Ecroyd
- Illawara Health and Medical Research Institute, School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522 Australia
| | - Cecilia Emanuelsson
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, 221 00 Lund, Sweden
| | - Stephanie Finet
- IMPMC UMR7590, CNRS, UPMC Paris 6, 4 place Jussieu, Paris, France
| | - Nikola Golenhofen
- Institute of Anatomy and Cell Biology, University of Ulm, 89081 Ulm, Germany
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Nikolai Gusev
- Department of Biochemistry, School of Biology, Moscow State University, Moscow, 119991 Russia
| | | | - Lawrence E. Hightower
- Department of Molecular & Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269-3125 USA
| | - Harm H. Kampinga
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Rachel E. Klevit
- Department of Biochemistry, University of Washington, Seattle, WA 98195 USA
| | - Krzysztof Liberek
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and the Medical University of Gdańsk, Gdańsk, Poland
| | - Hassane S. Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232 USA
| | - Kathryn A. McMenimen
- Departments of Pathology, Biological Chemistry, and Medicinal Chemistry and the Life Sciences Institute, University of Michigan, Ann Arbor, MI USA
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Roy Quinlan
- Department of Biosciences and the Biophysical Sciences Institute, University of Durham, Durham, UK
| | - Sergei V. Strelkov
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Melinda E. Toth
- Laboratory of Animal Genetics and Molecular Neurobiology, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Elizabeth Vierling
- Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003 USA
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721 USA
| | - Robert M. Tanguay
- Laboratory of Cell & Developmental Genetics, IBIS, and Department of Molecular Biology, Medical Biochemistry and Pathology, Medical School, Université Laval, Québec (Qc), G1V 0A6 Canada
| |
Collapse
|
11
|
Lim EMF, Musa A, Frederick A, Ousman SS. AlphaB-crystallin expression correlates with aging deficits in the peripheral nervous system. Neurobiol Aging 2017; 53:138-149. [PMID: 28185662 DOI: 10.1016/j.neurobiolaging.2017.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 11/17/2022]
Abstract
In an effort to identify factors that contribute to age-related deficits in the undamaged and injured peripheral nervous system (PNS), we noted that Brady and colleagues found that mice null for a small heat shock protein called alphaB-crystallin (αBC) developed abnormalities early in life that are reminiscent of aging pathologies. Because of our observation that αBC protein levels markedly reduce as wild-type mice age, we investigated whether the crystallin plays a role in modulating age-related deficits in the uninjured and damaged PNS. We show here that the presence of αBC correlates with maintenance of myelin sheath thickness, reducing macrophage presence, sustaining lipid metabolism, and promoting remyelination following peripheral nerve injury in an age-dependent manner. More specifically, animals null for αBC displayed a higher frequency of thinly myelinated axons, enhanced presence of Iba1+ macrophages, and fewer immunoreactive profiles of the cholesterol biosynthesis enzyme, squalene monooxygenase, before and after sciatic nerve crush injury. These findings thus suggest that αBC plays a protective and beneficial role in the aging PNS.
Collapse
Affiliation(s)
- Erin-Mai F Lim
- Department of Neuroscience, University of Calgary and the Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Alim Musa
- Department of Clinical Neurosciences, University of Calgary and the Hotchkiss Brain Institute, Calgary, Alberta, Canada; Department of Cell Biology and Anatomy, University of Calgary and the Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Ariana Frederick
- Department of Clinical Neurosciences, University of Calgary and the Hotchkiss Brain Institute, Calgary, Alberta, Canada; Department of Cell Biology and Anatomy, University of Calgary and the Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Shalina S Ousman
- Department of Clinical Neurosciences, University of Calgary and the Hotchkiss Brain Institute, Calgary, Alberta, Canada; Department of Cell Biology and Anatomy, University of Calgary and the Hotchkiss Brain Institute, Calgary, Alberta, Canada.
| |
Collapse
|