1
|
Chacar S, Abdrabou W, Al Hageh C, Ali L, Venkatachalam T, Zalloua P, Suleiman MS, Howarth FC, Khraibi AA, Nader M. Remodeling of the cardiac striatin interactome and its dynamics in the diabetic heart. Sci Rep 2025; 15:7384. [PMID: 40025125 PMCID: PMC11873221 DOI: 10.1038/s41598-025-91098-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 02/18/2025] [Indexed: 03/04/2025] Open
Abstract
Diabetic cardiomyopathy (DbCM) is a silent and complex condition involving numerous signaling pathways that impair cardiomyocyte metabolism and cardiac performance. Striatin (STRN) is a multifaceted protein that binds metabolic proteins, yet its role in diabetic heart remains unexplored. Here we characterized the cardiac STRN interactome by performing immunoprecipitation on left ventricle (LV) proteins from control and diabetic hearts (rats treated with streptozotocin for 24 weeks) to dissect its derivative protein complex. Diabetic rats exhibited pathological heart remodeling characterized by increased heart weight/body weight ratio, elevated levels of Atrial Natriuretic Factor (ANF), and altered expression of alpha and beta-myosin heavy chain isoforms. Notably, STRN expression mirrored that of the remodeling marker ANF across all cardiac chambers. Proteomic analysis yielded 247 proteins interacting with STRN exclusively in diabetic LV, 94 in both control and diabetic LV, and 11 only in control LV. STRN retained a higher interaction with some STRN interacting phosphatase and kinase complex (STRIPAK) proteins (i.e. protein phosphatase 2A (PP2A), and sarcolemmal associated membrane protein (SLMAP)) in diabetic LV, indicating a preserved role of this signalosome in diabetic settings. Functional enrichment and gene ontology revealed that the STRN interactome in diabetic LV carried signalosomes related to cardiac contractility, endoplasmic reticulum stress, mitochondrial function, and apoptotic processes. Western blot experiments confirmed the interaction between STRN and SLMAP in both control and diabetic heart. These data suggest a pivotal role for the STRN signalosome in cardiometabolic disorders, potentially paving the way for novel therapeutic management of DbCM. Targeting the STRN interactome in DbCM, mainly the first-line interactors SLMAP, PP2A, and Cav-1 may offer hope for patients with diabetes-induced cardiac injuries.
Collapse
Affiliation(s)
- Stephanie Chacar
- Department of Medical Sciences, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Wael Abdrabou
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Cynthia Al Hageh
- Department of Public Health and Epidemiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Liaqat Ali
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Thenmozhi Venkatachalam
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Pierre Zalloua
- Department of Public Health and Epidemiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Frank Christopher Howarth
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ali A Khraibi
- Department of Biomedical Engineering and Biotechnology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Moni Nader
- Department of Medical Sciences, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
- Department of Physiological Sciences, College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia.
| |
Collapse
|
2
|
Kück U, Pöggeler S. STRIPAK, a fundamental signaling hub of eukaryotic development. Microbiol Mol Biol Rev 2024; 88:e0020523. [PMID: 39526753 DOI: 10.1128/mmbr.00205-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
SUMMARYThe striatin-interacting phosphatase and kinase (STRIPAK) complex is involved in the regulation of many developmental processes in eukaryotic microorganisms and all animals, including humans. STRIPAK is a component of protein phosphatase 2A (PP2A), a highly conserved serine-threonine phosphatase composed of catalytic subunits (PP2Ac), a scaffolding subunit (PP2AA) and various substrate-directing B regulatory subunits. In particular, the B''' regulatory subunit called striatin has evoked major interest over the last 20 years. Studies in fungal systems have contributed substantially to our current knowledge about STRIPAK composition, assembly, and cellular localization, as well as its regulatory role in autophagy and the morphology of fungal development. STRIPAK represents a signaling hub with many kinases and thus integrates upstream and downstream information from many conserved eukaryotic signaling pathways. A profound understanding of STRIPAK's regulatory role in fungi opens the gateway to understanding the multifarious functions carried out by STRIPAK in higher eukaryotes, including its contribution to malignant cell growth.
Collapse
Affiliation(s)
- Ulrich Kück
- Allgemeine & Molekulare Botanik, Ruhr-University, Bochum, Germany
| | - Stefanie Pöggeler
- Department of Genetics of Eukaryotic Microorganisms, Institute of Microbiology and Genetics, Georg-August-University, Göttingen, Germany
- Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University, Göttingen, Germany
| |
Collapse
|
3
|
Li AX, Martin TA, Lane J, Jiang WG. Cellular Impacts of Striatins and the STRIPAK Complex and Their Roles in the Development and Metastasis in Clinical Cancers (Review). Cancers (Basel) 2023; 16:76. [PMID: 38201504 PMCID: PMC10777921 DOI: 10.3390/cancers16010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Striatins (STRNs) are generally considered to be cytoplasmic proteins, with lower expression observed in the nucleus and at cell-cell contact regions. Together with protein phosphatase 2A (PP2A), STRNs form the core region of striatin-interacting phosphatase and kinase (STRIPAK) complexes through the coiled-coil region of STRN proteins, which is crucial for substrate recruitment. Over the past two decades, there has been an increasing amount of research into the biological and cellular functions of STRIPAK members. STRNs and the constituent members of the STRIPAK complex have been found to regulate several cellular functions, such as cell cycle control, cell growth, and motility. Dysregulation of these cellular events is associated with cancer development. Importantly, their roles in cancer cells and clinical cancers are becoming recognised, with several STRIPAK components found to have elevated expression in cancerous tissues compared to healthy tissues. These molecules exhibit significant diagnostic and prognostic value across different cancer types and in metastatic progression. The present review comprehensively summarises and discusses the current knowledge of STRNs and core STRIPAK members, in cancer malignancy, from both cellular and clinical perspectives.
Collapse
Affiliation(s)
| | - Tracey A. Martin
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; (A.X.L.); (J.L.); (W.G.J.)
| | | | | |
Collapse
|
4
|
Tanti GK, Pandey P, Shreya S, Jain BP. Striatin family proteins: The neglected scaffolds. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119430. [PMID: 36638846 DOI: 10.1016/j.bbamcr.2023.119430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/19/2022] [Accepted: 12/31/2022] [Indexed: 01/12/2023]
Abstract
The Striatin family of proteins constitutes Striatin, SG2NA, and Zinedin. Members of this family of proteins act as a signaling scaffold due to the presence of multiple protein-protein interaction domains. At least two members of this family, namely Zinedin and SG2NA, have a proven role in cancer cell proliferation. SG2NA, the second member of this family, undergoes alternative splicing and gives rise to several isoforms which are differentially regulated in a tissue-dependent manner. SG2NA evolved earlier than the other two members of the family, and SG2NA undergoes not only alternative splicing but also other posttranscriptional gene regulation. Striatin also undergoes alternative splicing, and as a result, it gives rise to multiple isoforms. It has been shown that this family of proteins plays a significant role in estrogen signaling, neuroprotection, cancer as well as in cell cycle regulation. Members of the striatin family form a complex network of signaling hubs with different kinases and phosphatases, and other signaling proteins named STRIPAK. Here, in the present manuscript, we thoroughly reviewed the findings on striatin family members to elaborate on the overall structural and functional idea of this family of proteins. We also commented on the involvement of these proteins in STRIPAK complexes and their functional relevance.
Collapse
Affiliation(s)
- Goutam Kumar Tanti
- Department of Neurology, School of Medicine, Technical University of Munich, Germany.
| | - Prachi Pandey
- National Institute of Plant Genome Research, New Delhi, India
| | - Smriti Shreya
- Department of Zoology, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Buddhi Prakash Jain
- Department of Zoology, Mahatma Gandhi Central University, Motihari, Bihar, India.
| |
Collapse
|
5
|
Bisoyi P, Devi P, Besra K, Prasad A, Jain BP, Goswami SK. The profile of expression of the scaffold protein SG2NA(s) differs between cancer types and its interactome in normal vis-a-vis breast tumor tissues suggests its wide roles in regulating multiple cellular pathways. Mol Cell Biochem 2022; 477:1653-1668. [PMID: 35230605 DOI: 10.1007/s11010-022-04401-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/18/2022] [Indexed: 10/19/2022]
Abstract
Striatin and SG2NA are scaffold proteins that form signaling complexes called STRIPAK. It has been associated with developmental abnormalities, cancer, and several other diseases. Our earlier studies have shown that SG2NA forms a complex with the cancer-associated protein DJ-1 and the signaling kinase Akt, promoting cancer cell survival. In the present study, we used bioinformatics analyses to confirm the existence of two isoforms of human SG2NA, i.e., 78 and 87 kDas. In addition, several smaller isoforms like 35 kDa were also seen in western blot analyses of human cell lysates. The expression of these isoforms varies between different cancer cell lines of human origin. Also, the protein levels do not corroborate with its transcript levels, suggesting a complex regulation of its expression. In breast tumor tissues, the expression of the 35 and 78 kDa isoforms was higher as compared to the adjacent normal tissues, while the 87 kDa isoform was found in the breast tumor tissues only. With the progression of stages of breast cancer, while the expression of 78 kDa isoform decreased, 87 kDa became undetectable. In co-immunoprecipitation assays, the profile of the SG2NA interactome in breast tumors vis-à-vis adjacent normal breast tissues showed hundreds of common proteins. Also, some proteins were interacted with SG2NA in breast tumor tissues only. We conclude that SG2NA is involved in diverse cellular pathways and has roles in cellular reprogramming during tumorigenesis of the breast.
Collapse
Affiliation(s)
- Padmini Bisoyi
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| | - Padmalaya Devi
- Department of Surgical Oncology, Acharya Harihar Regional Cancer Centre, Cuttack, Odisha, 753007, India
| | - Kusumbati Besra
- Department of Pathology, Acharya Harihar Regional Cancer Center, Cuttack, Odisha, 753007, India
| | - Anamika Prasad
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| | - Buddhi Prakash Jain
- Department of Zoology, School of Life Sciences, Mahatma Gandhi Central University, Motihari, Bihar, 845401, India.
| | - Shyamal K Goswami
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India.
| |
Collapse
|
6
|
Gupta R, Kumar G, Jain BP, Chandra S, Goswami SK. Ectopic expression of 35 kDa and knocking down of 78 kDa SG2NAs induce cytoskeletal reorganization, alter membrane sialylation, and modulate the markers of EMT. Mol Cell Biochem 2021; 476:633-648. [PMID: 33083950 DOI: 10.1007/s11010-020-03932-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/07/2020] [Indexed: 12/01/2022]
Abstract
SG2NA is a protein of the striatin family that organizes STRIPAK complexes. It has splice variants expressing differentially in tissues. Its 78 kDa isoform regulates cell cycle, maintains homeostasis in the endoplasmic reticulum, and prevents oxidative injuries. The 35 kDa variant is devoid of the signature WD-40 repeats in the carboxy terminal, and its function is unknown. We expressed it in NIH 3T3 cells that otherwise express 78 kDa variant only. These cells (35 EE) have altered morphology, faster rate of migration, and enhanced growth as measured by the MTT assay. Similar phenotypes were also seen in cells where the endogenous 78 kDa isoform was downregulated by siRNA (78 KD). Proteomic analyses showed that several cancer-associated proteins are modulated in both 35 EE and 78 KD cells. The 35 EE cells have diffused actin fibers, distinctive ultrastructure, reduced sialylation, and increased expression of MMP2 & 9. The 78 KD cells also had diffused actin fibers and an upregulated expression of MMP2. In both cells, markers epithelial to mesenchymal transition (EMT) viz, E- & N-cadherins, β-catenin, slug, vimentin, and ZO-1 were modulated partially in tune with the EMT process. Since NIH 3T3 cells are mesenchymal, we also expressed 35 kDa SG2NA in MCF-7 cells of epithelial origin. In these cells (MCF-7-35), the actin fibers were also diffused and the modulation of the markers was more in tune with the EMT process. However, unlike in 35 EE cells, in MCF-7-35 cells, membrane sialylation rather increased. We infer that ectopic expression of 35 kDa and downregulation of 78 kDa SG2NAs partially induce transformed phenotypes.
Collapse
Affiliation(s)
- Richa Gupta
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| | - Gaurav Kumar
- Peptide and Proteomics Division, Defense Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, 110054, India
| | - Buddhi Prakash Jain
- Department of Zoology, School of Life Sciences, Mahatma Gandhi Central University, Motihari, 845401, Bihar, India
| | - Sunandini Chandra
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Shyamal K Goswami
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India.
| |
Collapse
|
7
|
Nadar-Ponniah PT, Taiber S, Caspi M, Koffler-Brill T, Dror AA, Siman-Tov R, Rubinstein M, Padmanabhan K, Luxenburg C, Lang RA, Avraham KB, Rosin-Arbesfeld R. Striatin Is Required for Hearing and Affects Inner Hair Cells and Ribbon Synapses. Front Cell Dev Biol 2020; 8:615. [PMID: 32766247 PMCID: PMC7381154 DOI: 10.3389/fcell.2020.00615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/22/2020] [Indexed: 12/22/2022] Open
Abstract
Striatin, a subunit of the serine/threonine phosphatase PP2A, is a core member of the conserved striatin-interacting phosphatase and kinase (STRIPAK) complexes. The protein is expressed in the cell junctions between epithelial cells, which play a role in maintaining cell-cell adhesion. Since the cell junctions are crucial for the function of the mammalian inner ear, we examined the localization and function of striatin in the mouse cochlea. Our results show that in neonatal mice, striatin is specifically expressed in the cell-cell junctions of the inner hair cells, the receptor cells in the mammalian cochlea. Auditory brainstem response measurements of striatin-deficient mice indicated a progressive, high-frequency hearing loss, suggesting that striatin is essential for normal hearing. Moreover, scanning electron micrographs of the organ of Corti revealed a moderate degeneration of the outer hair cells in the middle and basal regions, concordant with the high-frequency hearing loss. Additionally, striatin-deficient mice show aberrant ribbon synapse maturation. Loss of the outer hair cells, combined with the aberrant ribbon synapse distribution, may lead to the observed auditory impairment. Together, these results suggest a novel function for striatin in the mammalian auditory system.
Collapse
Affiliation(s)
- Prathamesh T. Nadar-Ponniah
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shahar Taiber
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Michal Caspi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tal Koffler-Brill
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Amiel A. Dror
- Department of Otolaryngology, Head and Neck Surgery, Galilee Medical Center, Nahariya, Israel
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Ronen Siman-Tov
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Moran Rubinstein
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Goldschleger Eye Research Institute, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Krishnanand Padmanabhan
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chen Luxenburg
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Richard A. Lang
- Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Karen B. Avraham
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Rina Rosin-Arbesfeld
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
8
|
Chauhan P, Gupta R, Jain BP, Pandey S, Goswami SK. Subcellular dynamics of variants of SG2NA in NIH3T3 fibroblasts. Cell Biol Int 2020; 44:637-650. [PMID: 31773824 DOI: 10.1002/cbin.11264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 11/14/2019] [Indexed: 12/12/2022]
Abstract
SG2NA, a WD40 repeat protein of the Striatin subfamily, has four splicing and one messenger RNA edit variants. It is fast emerging as a scaffold for multimeric signaling complexes with roles in tissue development and disease. The green fluorescent protein (GFP)-tagged variants of SG2NA were ectopically expressed in NIH3T3 cells and their modulation by serum and GSK3β-ERK signaling were monitored. The 87, 78, and 35 kDa variants showed a biphasic modulation by serum till 24 h but the 52 kDa variant remained largely unresponsive. Inhibition of phosphatases by okadaic acid increased the levels of the endogenous 78 kDa and the ectopically expressed GFP-tagged 87 and 78 kDa SG2NAs. Contrastingly, okadaic acid treatment reduced the level of GFP-tagged 35 kDa SG2NA, suggesting differential modes of their stability through phosphorylation-dephosphorylation. The inhibition of GSK3β by LiCl showed a gradual decrease in the levels of 78 kDa. In the case of the other variants viz, GFP-tagged 35, 52, and 87 kDa, inhibition of GSK3β caused an initial increase followed by a decrease with a subtle difference in kinetics and intensities. Similar results were also seen upon inhibition of GSK3β by small interfering RNA. All the variants showed an increase followed by a decrease upon inhibition of extracellular-signal-regulated-kinase (ERK). These variants are localized in the plasma membrane, endoplasmic reticulum, mitochondria, and the nucleus with different propensities and no discernable subcellular distribution was seen upon stimulation by serum and the inhibition of phosphatases, GSK3β, and ERK. Taken together, the variants of SG2NA are modulated by the kinase-phosphatase network in a similar but characteristic manner.
Collapse
Affiliation(s)
- Pooja Chauhan
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
- Department of Microbiology and Molecular Genetics, Hadassah Medical School, Institute of Medical Research Israel-Canada, The Hebrew University of Jerusalem, POB 12272, Jerusalem, 91120, Israel
| | - Richa Gupta
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| | - Buddhi P Jain
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
- Department of Zoology, School of Life Sciences, Mahatma Gandhi Central University Bihar, Motihari, 845401, India
| | - Shweta Pandey
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
- APSGMNS Govt PG College, Kawardha, Chhatishgarh
| | - Shyamal K Goswami
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| |
Collapse
|
9
|
Kück U, Radchenko D, Teichert I. STRIPAK, a highly conserved signaling complex, controls multiple eukaryotic cellular and developmental processes and is linked with human diseases. Biol Chem 2019; 400:1005-1022. [PMID: 31042639 DOI: 10.1515/hsz-2019-0173] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 03/28/2019] [Indexed: 01/17/2023]
Abstract
The striatin-interacting phosphatases and kinases (STRIPAK) complex is evolutionary highly conserved and has been structurally and functionally described in diverse lower and higher eukaryotes. In recent years, this complex has been biochemically characterized better and further analyses in different model systems have shown that it is also involved in numerous cellular and developmental processes in eukaryotic organisms. Further recent results have shown that the STRIPAK complex functions as a macromolecular assembly communicating through physical interaction with other conserved signaling protein complexes to constitute larger dynamic protein networks. Here, we will provide a comprehensive and up-to-date overview of the architecture, function and regulation of the STRIPAK complex and discuss key issues and future perspectives, linked with human diseases, which may form the basis of further research endeavors in this area. In particular, the investigation of bi-directional interactions between STRIPAK and other signaling pathways should elucidate upstream regulators and downstream targets as fundamental parts of a complex cellular network.
Collapse
Affiliation(s)
- Ulrich Kück
- Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Daria Radchenko
- Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Ines Teichert
- Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| |
Collapse
|
10
|
Soni S, Jain BP, Gupta R, Dharavath S, Kar K, Komath SS, Goswami SK. Biophysical Characterization of SG2NA Variants and their Interaction with DJ-1 and Calmodulin in vitro. Cell Biochem Biophys 2018; 76:451-461. [PMID: 30132185 DOI: 10.1007/s12013-018-0854-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 08/13/2018] [Indexed: 01/11/2023]
Abstract
SG2NA was first discovered as nuclear autoantigen in lung and bladder cancer patient. It was named SG2NA as its expression increases during S to G2 phase of cell cycle. SG2NA/Striatin3 was classified as a member of Striatin family along with Straitin and Zinedin due to its structural and functional relatedness. At the molecular level, SG2NA is characterized by the presence of multiple protein-protein interaction domains viz., a caveolin binding motif, a coiled coil structure, Ca2+-calmodulin binding domain and a large WD-40 repeat domain in the same order from amino to the carboxyl termini. Analysis of secondary structures of 87 and 78 kDa SG2NA isoforms showed characteristic combinations of α-helix, β-structure, β-turns and random coil; suggesting of effective refolding after denaturation. This study for the first time establishes the structural differences between the two prevalent isoforms of SG2NA. Recently we observed that DJ-1 interacts with variants of SG2NA both in vitro and in vivo. The SG2NA isoforms purified from inclusion bodies showed the different secondary structure conformations, stability and interaction pattern for their interacting partners (DJ-1 and calmodulin) which imparts functional diversity of SG2NA. The SG2NA isoforms showed significant differential binding affinity to DJ-1 and Calmodulin.
Collapse
Affiliation(s)
- Sangeeta Soni
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
- Department of Genetics, Barkatullah University, Bhopal, 462022, India
| | - Buddhi Prakash Jain
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
- Department of Zoology, School of Life Sciences, Mahatma Gandhi Central University Bihar, Motihari, 845401, India
| | - Richa Gupta
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sudhaker Dharavath
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Karunakar Kar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sneha Sudha Komath
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Shyamal K Goswami
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
11
|
Abstract
The WD40 domain is one of the most abundant and interacting domains in the eukaryotic genome. In proteins the WD domain folds into a β-propeller structure, providing a platform for the interaction and assembly of several proteins into a signalosome. WD40 repeats containing proteins, in lower eukaryotes, are mainly involved in growth, cell cycle, development and virulence, while in higher organisms, they play an important role in diverse cellular functions like signal transduction, cell cycle control, intracellular transport, chromatin remodelling, cytoskeletal organization, apoptosis, development, transcriptional regulation, immune responses. To play the regulatory role in various processes, they act as a scaffold for protein-protein or protein-DNA interaction. So far, no WD40 domain has been identified with intrinsic enzymatic activity. Several WD40 domain-containing proteins have been recently characterized in prokaryotes as well. The review summarizes the vast array of functions performed by different WD40 domain containing proteins, their domain organization and functional conservation during the course of evolution.
Collapse
Affiliation(s)
- Buddhi Prakash Jain
- Department of Zoology, School of Life Sciences, Mahatma Gandhi Central University, Motihari, Bihar, 845401, India.
| | - Shweta Pandey
- APSGMNS Govt P G College, Kawardha, Chhattisgarh, 491995, India
| |
Collapse
|