1
|
Li JQ, Shi YH, Min-Xu, Shi CX, Teng-Wang, Wang TH, Zuo ZF, Liu XZ. Discovery of astragaloside IV against high glucose-induced apoptosis in retinal ganglion cells: Bioinformatics and in vitro studies. Gene 2024; 905:148219. [PMID: 38286267 DOI: 10.1016/j.gene.2024.148219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 01/31/2024]
Abstract
OBJECTIVE To examine the therapeutic mechanism of astragaloside IV (AS-IV) in the management of retinal ganglion cell (RGC) injury induced by high glucose (HG), a comprehensive approach involving the integration of network pharmacology and conducting in vitro and in vivo experiments was utilized. METHODS A rat model of diabetic retinopathy (DR) injury was created by administering streptozotocin through intraperitoneal injection. Additionally, a model of RGC injury induced by HG was established using a glucose concentration of 0.3 mmol/mL. Optical coherence tomography (OCT) images were captured 8 weeks after the injection of AS-IV. AS-IV and FBS were added to the culture medium and incubated for 48 h. The viability of cells was assessed using a CCK-8 assay, while the content of reactive oxygen species (ROS) was measured using DCFH-DA. Apoptosis was evaluated using Annexin V-PI. To identify the targets of AS-IV, hyperglycemia, and RGC, publicly available databases were utilized. The Metascape platform was employed for conducting GO and KEGG enrichment analyses. The STRING database in conjunction with Cytoscape 3.7.2 was used to determine common targets of protein-protein interactions (PPIs) and to identify the top 10 core target proteins in the RGC based on the MCC algorithm. qRT-PCR was used to measure the mRNA expression levels of the top10 core target proteins in RGCs. RESULTS OCT detection indicated that the thickness of the outer nucleus, and inner and outer accessory layers of the retina increased in the AS-IV treated retina compared to that in the DM group but decreased compared to that in the CON group. Coculturing RGC cells with AS-IV after HG induction resulted in a significant increase in cell viability and a decrease in ROS and apoptosis, suggesting that AS-IV can reduce damage to RGC cells caused by high glucose levels by inhibiting oxidative stress. There were 14 potential targets of AS-IV in the treatment of RGC damage induced by high glucose levels. The top 10 core target proteins identified by the MCC algorithm were HIF1α, AKT1, CTNNB1, SMAD2, IL6, SMAD3, IL1β, PPARG, TGFβ1, and NOTCH3. qRT-PCR analysis showed that AS-IV could upregulate the mRNA expression levels of SMAD3, TGF-β1, and NOTCH3, and downregulate the mRNA expression levels of HIF1α, AKT1, CTNNB1, SMAD2, SMAD3, and IL-1β in high glucose-induced RGC cells. CONCLUSION The findings of this study validate the efficacy of astragaloside IV in the treatment of DR and shed light on the molecular network involved. Specifically, HIF1α, AKT1, CTNNB1, SMAD2, SMAD3, and IL-1β were identified as the crucial candidate molecules responsible for the protective effects of astragaloside IV on RGCs.
Collapse
Affiliation(s)
- Jun-Qi Li
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China; Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou 121000, China
| | - Ya-Hui Shi
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China; Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou 121000, China
| | - Min-Xu
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China; Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou 121000, China
| | - Cai-Xing Shi
- School of Basic Medicine, Jining Medical University, Jining 272067, China
| | - Teng-Wang
- The First Affiliated Hospital of Jinzhou Medical University, 121000, China
| | - Ting-Hua Wang
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China; Institute of Neuroscience, Kunming Medical University, Kunming 650500, China.
| | - Zhong-Fu Zuo
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China; Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou 121000, China.
| | - Xue-Zheng Liu
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China; Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou 121000, China.
| |
Collapse
|
2
|
Zhou J, Shi M, Li M, Cheng L, Yang J, Huang X. Retraction Note: Sirtuin 3 inhibition induces mitochondrial stress in tongue cancer by targeting mitochondrial fission and the JNK-Fis1 biological axis. Cell Stress Chaperones 2021; 26:1011. [PMID: 34432226 PMCID: PMC8578357 DOI: 10.1007/s12192-021-01227-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2021] [Indexed: 10/20/2022] Open
Affiliation(s)
- Jichi Zhou
- Department of Oral and Maxillofacial Surgery, Beijing Stomatological Hospital, Capital Medical University, Tiantanxili 4, Dongcheng District, Beijing, 100050, China
| | - Menghan Shi
- Department of Oral and Maxillofacial Surgery, Beijing Stomatological Hospital, Capital Medical University, Tiantanxili 4, Dongcheng District, Beijing, 100050, China
| | - Man Li
- Department of Oral and Maxillofacial Surgery, Beijing Stomatological Hospital, Capital Medical University, Tiantanxili 4, Dongcheng District, Beijing, 100050, China
| | - Long Cheng
- Department of Oral and Maxillofacial Surgery, Beijing Stomatological Hospital, Capital Medical University, Tiantanxili 4, Dongcheng District, Beijing, 100050, China
| | - Jinsuo Yang
- Department of Oral and Maxillofacial Surgery, Beijing Stomatological Hospital, Capital Medical University, Tiantanxili 4, Dongcheng District, Beijing, 100050, China
| | - Xin Huang
- Department of Oral and Maxillofacial Surgery, Beijing Stomatological Hospital, Capital Medical University, Tiantanxili 4, Dongcheng District, Beijing, 100050, China.
| |
Collapse
|
3
|
Wei B, Wang M, Hao W, He X. Retraction Note: Mst1 facilitates hyperglycemia-induced retinal pigmented epithelial cell apoptosis by evoking mitochondrial stress and activating the Smad2 signaling pathway. Cell Stress Chaperones 2021; 26:869. [PMID: 34432225 PMCID: PMC8492852 DOI: 10.1007/s12192-021-01226-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2021] [Indexed: 10/20/2022] Open
Affiliation(s)
- Bing Wei
- Department of Medicine, He University, No.66, Sishui Street, Hunnan District, Shenyang City, Liaoning Province, China
| | - Min Wang
- Department of Medicine, He University, No.66, Sishui Street, Hunnan District, Shenyang City, Liaoning Province, China
| | - Wei Hao
- Department of Medicine, He University, No.66, Sishui Street, Hunnan District, Shenyang City, Liaoning Province, China
| | - Xiangdong He
- Department of Medicine, He University, No.66, Sishui Street, Hunnan District, Shenyang City, Liaoning Province, China.
| |
Collapse
|
4
|
Zhao HX, Zhang Z, Zhou HL, Hu F, Yu Y. Exercise training suppresses Mst1 activation and attenuates myocardial dysfunction in mice with type 1 diabetes. Can J Physiol Pharmacol 2020; 98:777-784. [PMID: 32687725 DOI: 10.1139/cjpp-2020-0205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Our study was to test the effects of aerobic exercise on myocardial function in mice with type 1 diabetes and investigate the underlying mechanism associated with mammalian sterile 20-like kinase 1 (Mst1). Wild-type mice and Mst1(-/-) mice were injected with streptozotocin to induce diabetes and given moderate-intensity exercise for 12 weeks. Phosphorylation of Mst1 was significantly enhanced in the left ventricles of diabetic mice, which was reversed by exercise training. Exercise training or Mst1 deficiency improved myocardial function and reduced myocardial fibrosis in diabetic mice. Exercise training or Mst1 deficiency reduced TUNEL-positive cells and caspase-3 activity in the myocardium of diabetic mice. Exercise training or Mst1 deficiency abated oxidative stress and reduced mitochondrial reactive oxygen species formation, attenuated mitochondrial swelling, and enhanced mitochondrial adenosine triphosphate formation and mitochondrial membrane potential in the myocardium of diabetic mice. Exercise training or Mst1 deficiency suppressed inflammation in the myocardium of diabetic mice. Furthermore, exercise training did not provide further protection in Mst1 knockout mice in diabetes. In conclusion, chronic exercise training attenuated myocardial dysfunction in mice with type 1 diabetes, at least in part, through suppressing Mst1 activation.
Collapse
Affiliation(s)
- Hao-Xi Zhao
- Department of Physical Education, Chengdu University of Information Technology, Chengdu 610225, People's Republic of China
| | - Zhigang Zhang
- Department of Cardiology, Putuo Center Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Hui-Ling Zhou
- Department of Physical Education, Chengdu University of Information Technology, Chengdu 610225, People's Republic of China
| | - Fang Hu
- Department of Physical Education, Chengdu University of Information Technology, Chengdu 610225, People's Republic of China
| | - Yongsheng Yu
- Department of Cardiovasology, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| |
Collapse
|
5
|
Afşar E, Kırımlıoglu E, Çeker T, Yılmaz Ç, Demir N, Aslan M. Effect of ER stress on sphingolipid levels and apoptotic pathways in retinal pigment epithelial cells. Redox Biol 2020; 30:101430. [PMID: 31978676 PMCID: PMC6976939 DOI: 10.1016/j.redox.2020.101430] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/30/2019] [Accepted: 01/10/2020] [Indexed: 12/31/2022] Open
Abstract
Background We aimed to determine sphingolipid levels and examine apoptotic pathways in human retinal pigment epithelial cells (ARPE-19) undergoing endoplasmic reticulum (ER) stress. Methods Cells were treated with tunicamycin (TM) to induce ER stress and tauroursodeoxycholic acid (TUDCA), an ER stress inhibitor, was administered to decrease cytotoxicity. Cell viability was measured by MTT assay. Levels of C16–C24 sphingomyelins (SM) and C16–C24 ceramides (CERs) were determined by LC-MS/MS. Glucose-regulated protein 78-kd (GRP78) and nuclear factor kappa-b subunit 1 (NFκB1) gene expressions were evaluated by quantitative PCR analysis, while GRP 78, NF-κB p65, cleaved caspase-3 and caspase-12 protein levels were assesed by immunofluorescence. Ceramide-1-phosphate (C1P) levels were determined by immunoassay, while caspase −3 and −12 activity in cell lysates were measured via a fluorometric method. Results Induction of ER stress in TM treated groups were confirmed by significantly increased mRNA and protein levels of GRP78. TM significantly decreased cell viability compared to controls. Treatment with TUDCA along with TM significantly increased cell viability compared to the TM group. A significant increase was observed in C22–C24 CERs, C1P, caspase-3, caspase-12, NFκB1 mRNA and NF-κB p65 protein levels in cells treated with TM compared to controls. Administration of TUDCA lead to a partial decrease in GRP78 expression, NFκB1 mRNA, NF-κB p65 protein, C22–C24 CERs and C1P levels along with a decrease in caspase-3 and -12 activity. Conclusions The results of this study reveal the presence of increased long chain CERs, C1P and apoptotic markers in retinal cells undergoing ER stress.
Collapse
Affiliation(s)
- Ebru Afşar
- Department of Medical Biochemistry, Akdeniz University Faculty of Medicine, Antalya, Turkey.
| | - Esma Kırımlıoglu
- Department of Histology, Akdeniz University Faculty of Medicine, Antalya, Turkey.
| | - Tuğçe Çeker
- Department of Medical Biochemistry, Akdeniz University Faculty of Medicine, Antalya, Turkey.
| | - Çağatay Yılmaz
- Department of Medical Biochemistry, Akdeniz University Faculty of Medicine, Antalya, Turkey.
| | - Necdet Demir
- Department of Histology, Akdeniz University Faculty of Medicine, Antalya, Turkey.
| | - Mutay Aslan
- Department of Medical Biochemistry, Akdeniz University Faculty of Medicine, Antalya, Turkey.
| |
Collapse
|