1
|
Bloskie T, Taiwo OO, Storey KB. Reversible Histone Modifications Contribute to the Frozen and Thawed Recovery States of Wood Frog Brains. Biomolecules 2024; 14:839. [PMID: 39062553 PMCID: PMC11275241 DOI: 10.3390/biom14070839] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Epigenetic regulation, notably histone post-translational modification (PTM), has emerged as a major transcriptional control of gene expression during cellular stress adaptation. In the present study, we use an acid extraction method to isolate total histone protein and investigate dynamic changes in 23 well-characterized histone methylations/acetylations in the brains of wood frogs subject to 24-h freezing and subsequent 8-h thawed recovery conditions. Our results identify four histone PTMs (H2BK5ac, H3K14ac, H3K4me3, H3K9me2) and three histone proteins (H1.0, H2B, H4) that were significantly (p < 0.05) responsive to freeze-thaw in freeze-tolerant R. sylvatica brains. Two other permissive modifications (H3R8me2a, H3K9ac) also trended downwards following freezing stress. Together, these data are strongly supportive of the proposed global transcriptional states of hypometabolic freeze tolerance and rebounded thawed recovery. Our findings shed light on the intricate interplay between epigenetic regulation, gene transcription and energy metabolism in wood frogs' adaptive response to freezing stress.
Collapse
Affiliation(s)
| | | | - Kenneth B. Storey
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada; (T.B.); (O.O.T.)
| |
Collapse
|
2
|
de Amaral M, Von Dentz MC, David SM, Kucharski LC. Gluconeogenesis in frogs during cooling and dehydration exposure: new insights into tissue plasticity of the gluconeogenic pathway dependent on abiotic factors. J Exp Biol 2024; 227:jeb247259. [PMID: 38774939 DOI: 10.1242/jeb.247259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/03/2024] [Indexed: 06/06/2024]
Abstract
Anurans undergo significant physiological changes when exposed to environmental stressors such as low temperatures and humidity. Energy metabolism and substrate management play a crucial role in their survival success. Therefore, understanding the role of the gluconeogenic pathway and demonstrating its existence in amphibians is essential. In this study, we exposed the subtropical frog Boana pulchella to cooling (-2.5°C for 24 h) and dehydration conditions (40% of body water loss), followed by recovery (24 h), and assessed gluconeogenesis activity from alanine, lactate, glycerol and glutamine in the liver, muscle and kidney. We report for the first time that gluconeogenesis activity by 14C-alanine and 14C-lactate conversion to glucose occurs in the muscle tissue of frogs, and this tissue activity is influenced by environmental conditions. Against the control group, liver gluconeogenesis from 14C-lactate and 14C-glycerol was lower during cooling and recovery (P<0.01), and gluconeogenesis from 14C-glutamine in the kidneys was also lower during cooling (P<0.05). In dehydration exposure, gluconeogenesis from 14C-lactate in the liver was lower during recovery, and that from 14C-alanine in the muscle was lower during dehydration (P<0.05). Moreover, we observed that gluconeogenesis activity and substrate preference respond differently to cold and dehydration. These findings highlight tissue-specific plasticity dependent on the nature of the encountered stressor, offering valuable insights for future studies exploring this plasticity, elucidating the importance of the gluconeogenic pathway and characterizing it in anuran physiology.
Collapse
Affiliation(s)
- Marjoriane de Amaral
- Laboratory of Metabolism and Comparative Endocrinology, Department of Physiology, Federal University of Rio Grande do Sul (UFRGS), 2600 Ramiro Barcelos Street, 90035003 Porto Alegre, Rio Grande do Sul, Brazil
| | - Maiza Cristina Von Dentz
- Laboratory of Metabolism and Comparative Endocrinology, Department of Physiology, Federal University of Rio Grande do Sul (UFRGS), 2600 Ramiro Barcelos Street, 90035003 Porto Alegre, Rio Grande do Sul, Brazil
| | - Suyllieme Machado David
- Laboratory of Metabolism and Comparative Endocrinology, Department of Physiology, Federal University of Rio Grande do Sul (UFRGS), 2600 Ramiro Barcelos Street, 90035003 Porto Alegre, Rio Grande do Sul, Brazil
| | - Luiz Carlos Kucharski
- Laboratory of Metabolism and Comparative Endocrinology, Department of Physiology, Federal University of Rio Grande do Sul (UFRGS), 2600 Ramiro Barcelos Street, 90035003 Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
3
|
Shekhovtsov SV, Vorontsova YL, Slepneva IA, Smirnov DN, Khrameeva EE, Shatunov A, Poluboyarova TV, Bulakhova NA, Meshcheryakova EN, Berman DI, Glupov VV. The Impact of Long-Term Hypoxia on the Antioxidant Defense System in the Siberian Frog Rana amurensis. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:441-450. [PMID: 38648764 DOI: 10.1134/s0006297924030052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/16/2023] [Accepted: 12/29/2023] [Indexed: 04/25/2024]
Abstract
The Siberian frog Rana amurensis has a uniquely high tolerance to hypoxia among amphibians, as it is able to withstand several months underwater with almost no oxygen (0.2 mg/liter) vs. several days for other studied species. Since it was hypothesized that hypoxia actives the antioxidant defense system in hypoxia-tolerant animals, one would expect similar response in R. amurensis. Here, we studied the effect of hypoxia in the Siberian frog based on the transcriptomic data, activities of antioxidant enzyme, and content of low-molecular-weight antioxidants. Exposure to hypoxia upregulated expression of three relevant transcripts (catalase in the brain and two aldo-keto reductases in the liver). The activities of peroxidase in the blood and catalase in the liver were significantly increased, while the activity of glutathione S-transferase in the liver was reduced. The content of low-molecular-weight antioxidants (thiols and ascorbate) in the heart and liver was unaffected. In general, only a few components of the antioxidant defense system were affected by hypoxia, while most remained unchanged. Comparison to other hypoxia-tolerant species suggests species-specific adaptations to hypoxia-related ROS stress.
Collapse
Affiliation(s)
- Sergei V Shekhovtsov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
- Institute of Biological Problems of the North, Far East Branch of the Russian Academy of Sciences, Magadan, 630058, Russia
| | - Yana L Vorontsova
- Institute of Systematics and Ecology of Animals, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630091, Russia
| | - Irina A Slepneva
- Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Dmitry N Smirnov
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
- Department of Life Sciences, Ben-Gurion University of the Negev, 8410501 Beer Sheva, Israel
| | - Ekaterina E Khrameeva
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | - Alexey Shatunov
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, United Kingdom
| | - Tatiana V Poluboyarova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Nina A Bulakhova
- Institute of Biological Problems of the North, Far East Branch of the Russian Academy of Sciences, Magadan, 630058, Russia
| | - Ekaterina N Meshcheryakova
- Institute of Biological Problems of the North, Far East Branch of the Russian Academy of Sciences, Magadan, 630058, Russia
| | - Daniil I Berman
- Institute of Biological Problems of the North, Far East Branch of the Russian Academy of Sciences, Magadan, 630058, Russia
| | - Viktor V Glupov
- Institute of Systematics and Ecology of Animals, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630091, Russia
| |
Collapse
|
4
|
Storey JM, Storey KB. Chaperone proteins: universal roles in surviving environmental stress. Cell Stress Chaperones 2023; 28:455-466. [PMID: 36441380 PMCID: PMC10469148 DOI: 10.1007/s12192-022-01312-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/29/2022] Open
Abstract
Chaperone proteins have crucial roles to play in all animal species and are involved in mediating both the folding of newly synthesized peptides into their mature conformation, the refolding of misfolded proteins, and the trafficking of proteins between subcellular compartments. These highly conserved proteins have particularly important roles to play in dealing with disruptions of the proteome as a result of environmental stress since abiotic factors, including temperature, pressure, oxygen, water availability, and pollutants can readily disrupt the conformation and/or function of all types of proteins, e.g., enzymes, transporters, and structural proteins. The current review provides an update on recent advances in understanding the roles and responses of chaperones in aiding animals to deal with environmental stress, offering new information on chaperone action in supporting survival strategies including torpor, hibernation, anaerobiosis, estivation, and cold/freeze tolerance among both vertebrate and invertebrate species.
Collapse
Affiliation(s)
- Janet M Storey
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Kenneth B Storey
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
5
|
Zou Y, Shi H, Liu N, Wang H, Song X, Liu B. Mechanistic insights into heat shock protein 27, a potential therapeutic target for cardiovascular diseases. Front Cardiovasc Med 2023; 10:1195464. [PMID: 37252119 PMCID: PMC10219228 DOI: 10.3389/fcvm.2023.1195464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023] Open
Abstract
Heat shock protein 27 (HSP27) is a small chaperone protein that is overexpressed in a variety of cellular stress states. It is involved in regulating proteostasis and protecting cells from multiple sources of stress injury by stabilizing protein conformation and promoting the refolding of misfolded proteins. Previous studies have confirmed that HSP27 is involved in the development of cardiovascular diseases and plays an important regulatory role in this process. Herein, we comprehensively and systematically summarize the involvement of HSP27 and its phosphorylated form in pathophysiological processes, including oxidative stress, inflammatory responses, and apoptosis, and further explore the potential mechanisms and possible roles of HSP27 in the diagnosis and treatment of cardiovascular diseases. Targeting HSP27 is a promising future strategy for the treatment of cardiovascular diseases.
Collapse
|
6
|
Niles J, Singh G, Storey KB. Role of unfolded protein response and ER-associated degradation under freezing, anoxia, and dehydration stresses in the freeze-tolerant wood frogs. Cell Stress Chaperones 2023; 28:61-77. [PMID: 36346580 PMCID: PMC9877271 DOI: 10.1007/s12192-022-01307-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/25/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022] Open
Abstract
The North American amphibian, wood frogs, Rana sylvatica are the most studied anuran to comprehend vertebrate freeze tolerance. Multiple adaptations support their survival in frigid temperatures during winters, particularly their ability to produce glucose as natural cryoprotectant. Freezing and its component consequences (anoxia and dehydration) induce multiple stresses on cells. Among these is endoplasmic reticulum (ER) stress, a condition spawned by buildup of unfolded or misfolded proteins in the ER. The ER stress causes the unfolded protein response (UPR) and the ER-associated degradation (ERAD) pathway that potentially could lead to apoptosis. Immunoblotting was used to assess the responses of major proteins of the UPR and ERAD under freezing, anoxia, and dehydration stresses in the liver and skeletal muscle of the wood frogs. Targets analyzed included activating transcription factors (ATF3, ATF4, ATF6), the growth arrest and DNA damage proteins (GADD34, GADD153), and EDEM (ERAD enhancing α-mannosidase-like proteins) and XBP1 (X-box binding protein 1) proteins. UPR signaling was triggered under all three stresses (freezing, anoxia, dehydration) in liver and skeletal muscle of wood frogs with most tissue/stress responses consistent with an upregulation of the primary targets of all three UPR pathways (ATF4, ATF6, and XBP-1) to enhance the protein folding/refolding capacity under these stress conditions. Only frozen muscle showed preference for proteasomal degradation of misfolded proteins via upregulation of EDEM (ERAD). The ERAD response of liver was downregulated across three stresses suggesting preference for more refolding of misfolded/unfolded proteins. Overall, we conclude that wood frog organs activate the UPR as a means of stabilizing and repairing cellular proteins to best survive freezing exposures.
Collapse
Affiliation(s)
- Jacques Niles
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Gurjit Singh
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Kenneth B Storey
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
7
|
Al-Attar R, Storey KB. Lessons from nature: Leveraging the freeze-tolerant wood frog as a model to improve organ cryopreservation and biobanking. Comp Biochem Physiol B Biochem Mol Biol 2022; 261:110747. [PMID: 35460874 DOI: 10.1016/j.cbpb.2022.110747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 11/27/2022]
Abstract
The freeze-tolerant wood frog, Rana sylvatica, is one of the very few vertebrate species known to endure full body freezing in winter and thaw in early spring without any significant sign of damage. Once frozen, wood frogs show no cardiac or lung activity, brain function, or physical movement yet resume full physiological and biochemical functions within hours after thawing. The miraculous ability to tolerate such extreme stresses makes wood frogs an attractive model for identifying the molecular mechanisms that can promote freeze/thaw endurance. Recapitulating these pro-survival strategies in transplantable human cells and organs could improve viability post-thaw leading to better post-transplant outcomes, in addition to providing more time for adequate distribution of these transplantable materials across larger geographical areas. Indeed, several laboratories are beginning to mimic the pro-survival responses observed in wood frogs to preservation of human cells, tissues and organs and, to date, a few trials have been successful in extending preservation time prior to transplantation. In this review, we discuss the biology of the freeze-tolerant wood frog, current advances in biobanking based on these animals, and extend our discussion to future prospects for cryopreservation as an aid to regenerative medicine.
Collapse
Affiliation(s)
- Rasha Al-Attar
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, Ontario, Canada; McEwen Stem Cell Institute, University Health Network, Toronto, Ontario, Canada
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, Ontario, Canada.
| |
Collapse
|
8
|
Al-Attar R, Storey KB. RAGE management: ETS1- EGR1 mediated transcriptional networks regulate angiogenic factors in wood frogs. Cell Signal 2022; 98:110408. [PMID: 35842171 DOI: 10.1016/j.cellsig.2022.110408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/02/2022] [Accepted: 07/11/2022] [Indexed: 11/03/2022]
Abstract
Freeze-tolerant species, such as wood frogs (Rana sylvatica), are susceptible to multiple co-occurring stresses that they must overcome to survive. Freezing is accompanied by mechanical stress and dehydration due to ice crystal formation in the extracellular space, ischemia/anoxia due to interruption in blood flood, and hyperglycemia due to cryoprotective measures. Wood frogs can survive dehydration, anoxia, and high glucose stress independently of freezing, thereby creating a multifactorial model for studying freeze-tolerance. Oxidative stress and high glucose levels favors the production of pro-oxidant molecules and advanced glycation end product (AGE) adducts that could cause substantial cellular damage. In this study, the involvement of the high mobility group box 1 (HMGB1)-AGE/RAGE (receptor for AGE) axis and the regulation of ETS1 and EGR1-mediated angiogenic responses were investigated in liver of wood frogs expose to freeze/thaw, anoxia/reoxygenation and dehydration/rehydration treatments. HMGB1 and not AGE-adducts are likely to induce the activation of ETS1 and EGR1 via the RAGE pathway. The increase in nuclear localization of both ETS1 and EGR1, but not DNA binding activity in response to stress hints to a potential spatial and temporal regulation in inducing angiogenic factors. Freeze/thaw and dehydration/rehydration treatments increase the levels of both pro- and anti-angiogenic factors, perhaps to prepare for the distribution of cryoprotectants or enable the repair of damaged capillaries and wounds when needed. Overall, wood frogs appear to anticipate the need for angiogenesis in response to freezing and dehydration but not anoxic treatments, probably due to mechanical stress associated with the two former conditions.
Collapse
Affiliation(s)
- Rasha Al-Attar
- Institude of Biochemistry and Department of Biology, Carleton University, Ottawa, ON K1S-5B6, Canada; McEwen Stem Cell Institute, University Health Network, Toronto, Ontario, Canada
| | - Kenneth B Storey
- Institude of Biochemistry and Department of Biology, Carleton University, Ottawa, ON K1S-5B6, Canada.
| |
Collapse
|
9
|
Shekhovtsov SV, Bulakhova NA, Tsentalovich YP, Zelentsova EA, Meshcheryakova EN, Poluboyarova TV, Berman DI. Metabolomic Analysis Reveals That the Moor Frog Rana arvalis Uses Both Glucose and Glycerol as Cryoprotectants. Animals (Basel) 2022; 12:ani12101286. [PMID: 35625132 PMCID: PMC9137551 DOI: 10.3390/ani12101286] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/27/2022] Open
Abstract
Simple Summary The moor frog Rana arvalis can tolerate freezing to low temperatures, up to −16 °C. We performed metabolomic analysis of the liver and hindlimb muscles of frozen and control R. arvalis. We found that the moor frog synthesizes glucose and glycerol in similar concentrations as low molecular weight cryoprotectants. This is the first such case reported for the genus Rana, which was believed to use glucose only. We found that freezing upregulates glycolysis, with the accumulation of several end products: lactate, alanine, ethanol, and, possibly, 2,3-butanediol. To our knowledge, this is also the first report of ethanol as an end product of glycolysis in terrestrial vertebrates. We observed highly increased concentrations of nucleotide degradation products, implying high level of stress. We found almost no signs of adaptations to reoxygenation stress, with overall low levels of antioxidants. We also performed metabolomics analysis of subcutaneous ice that was found to contain glucose, glycerol, and several other substances. Abstract The moor frog Rana arvalis is one of a few amphibians that can tolerate freezing to low temperatures, up to −16 °C. In this study, we performed metabolomic analysis of the liver and hindlimb muscles of frozen and control R. arvalis. We found that the moor frog synthesizes glucose and glycerol in similar concentrations as low molecular weight cryoprotectants. This is the first such case reported for the genus Rana, which was believed to use glucose only. We found that freezing upregulates glycolysis, with the accumulation of several end products: lactate, alanine, ethanol, and, possibly, 2,3-butanediol. To our knowledge, this is also the first report of ethanol as an end product of glycolysis in terrestrial vertebrates. We observed highly increased concentrations of nucleotide degradation products, implying high level of stress. The Krebs cycle arrest resulted in high concentrations of succinate, which is common for animals. However, we found almost no signs of adaptations to reoxygenation stress, with overall low levels of antioxidants. We also performed metabolomics analysis of subcutaneous ice that was found to contain glucose, glycerol, and several other substances.
Collapse
Affiliation(s)
- Sergei V. Shekhovtsov
- Institute of the Biological Problems of the North FEB RAS, 685000 Magadan, Russia; (N.A.B.); (E.N.M.); (D.I.B.)
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia;
- Correspondence:
| | - Nina A. Bulakhova
- Institute of the Biological Problems of the North FEB RAS, 685000 Magadan, Russia; (N.A.B.); (E.N.M.); (D.I.B.)
| | - Yuri P. Tsentalovich
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia; (Y.P.T.); (E.A.Z.)
| | - Ekaterina A. Zelentsova
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia; (Y.P.T.); (E.A.Z.)
- Department of Chemical and Biological Physics, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Ekaterina N. Meshcheryakova
- Institute of the Biological Problems of the North FEB RAS, 685000 Magadan, Russia; (N.A.B.); (E.N.M.); (D.I.B.)
| | | | - Daniil I. Berman
- Institute of the Biological Problems of the North FEB RAS, 685000 Magadan, Russia; (N.A.B.); (E.N.M.); (D.I.B.)
| |
Collapse
|
10
|
Gupta A, Breedon SA, Storey KB. Activation of p53 in anoxic freshwater crayfish, Faxonius virilis. J Exp Biol 2022; 225:275712. [DOI: 10.1242/jeb.244145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/12/2022] [Indexed: 11/20/2022]
Abstract
Tumor suppressing transcription factor p53 regulates multiple pathways including DNA repair, cell survival, apoptosis, and autophagy. The current work studies stress-induced activation of p53 in anoxic crayfish (Faxonius virilis). Relative levels of target proteins and mRNAs involved in the DNA damage response was measured in normoxic control and anoxic hepatopancreas and tail muscle. Phosphorylation levels of p53 was assessed using immunoblotting at sites known to be phosphorylated (Serine 15 and 37) in response to DNA damage or reduced oxygen signaling. The capacity for DNA binding by phospho-p53 was also measured, followed by transcript analysis of a potentially pro-apoptotic downstream target, the etoposide induced (ei24) gene. Following this, both inhibitor (MDM2) and activator (p19-ARF) protein levels in response to low oxygen stress were studied. The results showed an increase in p53 levels during anoxia in both hepatopancreases and tail muscle. Increased transcript levels of ei24, a downstream target of p53, support the activation of p53 under anoxic stress. Cytoplasmic accumulation of Ser-15 p-p53 was observed during anoxia when proteins from cytoplasmic and nuclear fractions were measured. Increased cytoplasmic concentration is known to initiate an apoptotic response, which can be assumed as a preparatory step to prevent autophagy. The results suggest that p53 might play a protective role in crayfish defense against low oxygen stress. Understanding how anoxia-tolerant organisms are able to protect against DNA damage could provide important clues towards survival under metabolic rate depression and preparation for recovery to minimize damage.
Collapse
Affiliation(s)
- Aakriti Gupta
- Department of Biology, Carleton University, Ottawa, K1S 5B6, Canada
| | - Sarah A. Breedon
- Department of Biology, Carleton University, Ottawa, K1S 5B6, Canada
| | | |
Collapse
|
11
|
Singh G, Storey KB. Mitochondrial DNA methyltransferases and their regulation under freezing and dehydration stresses in the freeze tolerant wood frog, Rana sylvatica. Biochem Cell Biol 2022; 100:171-178. [PMID: 35104156 DOI: 10.1139/bcb-2021-0519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Wood frogs are one of a few vertebrate species that can survive whole-body freezing. Multiple adaptations support this including cryoprotectant production (glucose), metabolic rate depression and selective changes in gene/protein expression to activate pro-survival pathways. The role of DNA methylation machinery (DNA methyltransferases, DNMTs) in regulating nuclear gene expression supporting freezing survival has already been established. However, a comparable role for DNMTs in mitochondria has not been explored in wood frogs. We examined the mitochondrial protein levels of DNMT-1, DNMT-3A, DNMT-3B and DNMT-3L as well as mitochondrial DNMT activity in the liver and heart to assess DNMT involvement in the survival of freezing and dehydration stresses (cellular dehydration being one component of freezing). Our results showed stress and tissue-specific response by mitochondrial DNMT-1 protein in liver and heart respectively. During 24h freezing and whole-body dehydration, we saw an overall downregulation of mitochondrial DNMT-1, a major protein involved in maintaining methylation levels relating to its role in selective transcription of mitochondrial genes as well as antioxidant response. Tissue-specific response of protein levels of DNMT-3A, DNMT-3B and DNMT-3L and DNMT activity in the liver suggested a preference for higher methylation state in the liver under both freezing and dehydration stresses but not in the heart.
Collapse
Affiliation(s)
- Gurjit Singh
- Carleton University Department of Biology, 120895, Biology, Ottawa, Ontario, Canada;
| | - Kenneth B Storey
- Carleton University, 6339, Biology, Department of Biology, 1125 Colonel By Drive, Ottawa, Ottawa, Ontario, Canada, K1S 5B6;
| |
Collapse
|
12
|
Niu Y, Zhang X, Zhang H, Xu T, Men S, Storey KB, Chen Q. Antioxidant and non-specific immune defenses in partially freeze-tolerant Xizang plateau frogs, Nanorana parkeri. J Therm Biol 2021; 102:103132. [PMID: 34863473 DOI: 10.1016/j.jtherbio.2021.103132] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/05/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022]
Abstract
The Xizang plateau frog Nanorana parkeri can tolerate brief and partial freezing of their body. To determine the significant role of antioxidant defense and non-specific immune defense in freezing survival of this species, we assayed parameters of oxidative damage, antioxidant defense and non-specific immune enzymes during freezing exposure (-2 °C for 12 h) in five organs (heart, brain, liver, kidney, and skeletal muscle). The results showed that freezing led to a significant rise in the content of malondialdehyde (MDA) and carbonyl groups (CG) in brain, liver and kidney tissues. The activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) increased significantly in brain and liver tissues with an augmentation of total antioxidant capacity (T-AOC). Apparent increments in muscle SOD activity and liver GST activity were also observed during freezing exposure. Vitamin C content significantly decreased in liver and kidney but a significant increase occurred in brain. Activities of non-specific immune enzymes, acid phosphatase (ACP) and alkaline phosphatase (AKP), were also assessed. ACP activity was significantly reduced in all five tissues tested whereas AKP activity decreased significantly in four tissues but rose in brain. In summary, freezing is accompanied by oxidative stress in the high-altitude frog, N. parkeri, as documented by increases in the content of MDA and CG in tissues. Freezing exposure also induced tissue-specific changes in the antioxidant defenses showing that activation of antioxidant systems is a part of the survival strategy of this in a high-altitude frog during freezing. Such up-regulation of antioxidant enzymes suggests a particularly important role for them in the liver and brain, serving as an anticipatory mechanism to deal with the ROS challenge during freeze/thaw episodes. Our findings contribute to extending the current understanding of the mechanisms of freeze tolerance in high-altitude frogs.
Collapse
Affiliation(s)
- Yonggang Niu
- Department of Life Sciences, Dezhou University, Dezhou, China; School of Life Sciences, Lanzhou University, Lanzhou, China.
| | - Xuejing Zhang
- Department of Life Sciences, Dezhou University, Dezhou, China
| | - Haiying Zhang
- Department of Life Sciences, Dezhou University, Dezhou, China
| | - Tisen Xu
- Department of Life Sciences, Dezhou University, Dezhou, China
| | - Shengkang Men
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Kenneth B Storey
- Department of Biology, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Qiang Chen
- School of Life Sciences, Lanzhou University, Lanzhou, China.
| |
Collapse
|
13
|
Transcriptomic profiling of Gh/Igf system reveals a prompted tissue-specific differentiation and novel hypoxia responsive genes in gilthead sea bream. Sci Rep 2021; 11:16466. [PMID: 34385497 PMCID: PMC8360970 DOI: 10.1038/s41598-021-95408-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/19/2021] [Indexed: 12/16/2022] Open
Abstract
A customized PCR-array was used for the simultaneous gene expression of the Gh/Igf system and related markers of muscle growth, and lipid and energy metabolism during early life stages of gilthead sea bream (60–127 days posthatching). Also, transcriptional reprogramming by mild hypoxia was assessed in fingerling fish with different history trajectories on O2 availability during the same time window. In normoxic fish, the expression of almost all the genes in the array varied over time with a prompted liver and muscle tissue-specific differentiation, which also revealed temporal changes in the relative expression of markers of the full gilthead sea bream repertoire of Gh receptors, Igfs and Igf-binding proteins. Results supported a different contribution through development of ghr and igf subtypes on the type of action of GH via systemic or direct effects at the local tissue level. This was extensive to Igfbp1/2/4 and Igfbp3/5/6 clades that clearly evolved through development as hepatic and muscle Igfbp subtypes, respectively. This trade-off is however very plastic to cope changes in the environment, and ghr1 and igfbp1/3/4/5 emerged as hypoxic imprinting genes during critical early developmental windows leading to recognize individuals with different history trajectories of oxygen availability and metabolic capabilities later in life.
Collapse
|
14
|
Gupta A, Storey KB. Coordinated expression of Jumonji and AHCY under OCT transcription factor control to regulate gene methylation in wood frogs during anoxia. Gene 2021; 788:145671. [PMID: 33887369 DOI: 10.1016/j.gene.2021.145671] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/05/2021] [Accepted: 04/15/2021] [Indexed: 12/17/2022]
Abstract
Wood frogs (Rana sylvatica) can survive extended periods of whole body freezing. Freezing imparts multiple stresses on cells that include anoxia and dehydration, but these can also be experienced as independent stresses. Under anoxia stress, energy metabolism is suppressed, and pro-survival pathways are prioritized to differentially regulate some transcription factors including OCT1 and OCT4. Jumonji C domain proteins (JMJD1A and JMJD2C) are hypoxia responsive demethylases whose expression is accelerated by OCT1 and OCT4 which act to demethylate genes related to the methionine cycle. The responses by these factors to 24 h anoxia exposure and 4 h aerobic recovery was analyzed in liver and skeletal muscle of wood frogs to assess their involvement in metabolic adaptation to oxygen limitation. Immunoblot results showed a decrease in JMJD1A levels under anoxia in liver and muscle, but an increase was observed in JMJD2C demethylase protein in anoxic skeletal muscle. Protein levels of adenosylhomocysteinase (AHCY) and methionine adenosyl transferase (MAT), enzymes of the methionine cycle, also showed an increase in the reoxygenated liver, whereas the levels decreased in muscle. A transcription factor ELISA showed a decrease in DNA binding by OCT1 in the reoxygenated liver and anoxic skeletal muscle, and transcript levels also showed tissue specific gene expression. The present study provides the first analysis of the role of the OCT1 transcription factor, associated proteins, and lysine demethylases in mediating responses to anoxia by wood frog tissues.
Collapse
Affiliation(s)
- Aakriti Gupta
- Department of Biology, Carleton University, Ottawa K1S 5B6, Canada
| | - Kenneth B Storey
- Department of Biology, Carleton University, Ottawa K1S 5B6, Canada.
| |
Collapse
|
15
|
Mitochondria and the Frozen Frog. Antioxidants (Basel) 2021; 10:antiox10040543. [PMID: 33915853 PMCID: PMC8067143 DOI: 10.3390/antiox10040543] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 01/06/2023] Open
Abstract
The wood frog, Rana sylvatica, is the best-studied of a small group of amphibian species that survive whole body freezing during the winter months. These frogs endure the freezing of 65-70% of their total body water in extracellular ice masses. They have implemented multiple adaptations that manage ice formation, deal with freeze-induced ischemia/reperfusion stress, limit cell volume reduction with the production of small molecule cryoprotectants (glucose, urea) and adjust a wide variety of metabolic pathways for prolonged life in a frozen state. All organs, tissues, cells and intracellular organelles are affected by freeze/thaw and its consequences. This article explores mitochondria in the frozen frog with a focus on both the consequences of freezing (e.g., anoxia/ischemia, cell volume reduction) and mitigating defenses (e.g., antioxidants, chaperone proteins, upregulation of mitochondria-encoded genes, enzyme regulation, etc.) in order to identify adaptive strategies that defend and adapt mitochondria in animals that can be frozen for six months or more every year. A particular focus is placed on freeze-responsive genes in wood frogs that are encoded on the mitochondrial genome including ATP6/8, ND4 and 16S RNA. These were strongly up-regulated during whole body freezing (24 h at -2.5 °C) in the liver and brain but showed opposing responses to two component stresses: strong upregulation in response to anoxia but no response to dehydration stress. This indicates that freeze-responsive upregulation of mitochondria-encoded genes is triggered by declining oxygen and likely has an adaptive function in supporting cellular energetics under indeterminate lengths of whole body freezing.
Collapse
|
16
|
Yan BC, Cao J, Liu J, Gu Y, Xu Z, Li D, Gao L. Dietary Fe 3O 4 Nanozymes Prevent the Injury of Neurons and Blood-Brain Barrier Integrity from Cerebral Ischemic Stroke. ACS Biomater Sci Eng 2020; 7:299-310. [PMID: 33346645 DOI: 10.1021/acsbiomaterials.0c01312] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cerebral ischemic stroke stimulates excessive reactive oxygen species, which lead to blood-brain-barrier disruption, neuron death, and aggravated cerebral infarction. Thus, it is critical to develop an antioxidant strategy for stroke treatment. Herein, we report a dietary strategy to promote stroke healing using iron oxide (Fe3O4) nanoparticles with intrinsic enzyme-like activities. We find that Fe3O4 nanozymes exhibit triple enzyme-like activities, peroxidase, catalase, and superoxide dismutase, thus potentially possessing the ability to regulate the ROS level. Importantly, intragastric administration of PEG-modified Fe3O4 nanozymes significantly reduces cerebral infarction and neuronal death in a rodent model following cerebral ischemic stroke. Ex vivo analysis shows that PEG-modified Fe3O4 nanozymes localize in the cerebral vasculature, ameliorate local redox state with decreased malondialdehyde and increased Cu/Zn SOD, and facilitate blood-brain-barrier recovery by elevating ZO-1 and Claudin-5 in the hippocampus. Altogether, our results suggest that dietary PEG-modified Fe3O4 nanozymes can facilitate blood-brain-barrier reconstruction and protect neurons following ischemic stroke.
Collapse
Affiliation(s)
- Bing Chun Yan
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, People's Republic of China.,Department of Neurology, Affiliated Hospital, Yangzhou University, Yangzhou 225001, PR China.,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - Jianwen Cao
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, People's Republic of China
| | - Jiajia Liu
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, People's Republic of China
| | - Yunhao Gu
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, People's Republic of China
| | - Zhuobin Xu
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, People's Republic of China
| | - Dandan Li
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, People's Republic of China
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Institute of BiophysicsChinese Academy of Sciences, Beijing 100101, P. R. China
| |
Collapse
|
17
|
Gupta A, Brooks C, Storey KB. Regulation of NF-κB, FHC and SOD2 in response to oxidative stress in the freeze tolerant wood frog, Rana sylvatica. Cryobiology 2020; 97:28-36. [DOI: 10.1016/j.cryobiol.2020.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022]
|
18
|
Al-Attar R, Storey KB. RAGE against the stress: Mitochondrial suppression in hypometabolic hearts. Gene 2020; 761:145039. [PMID: 32777527 DOI: 10.1016/j.gene.2020.145039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/19/2020] [Accepted: 08/04/2020] [Indexed: 12/22/2022]
Abstract
The wood frog (Rana sylvatica) can tolerate full body freezing in winter. As a protective response, wood frogs dehydrate their cells and accumulate large quantities of glucose as an intracellular cryoprotectant. Freezing causes ischemia since blood delivery to organs is interrupted. Fascinatingly, wood frogs can tolerate dehydration, extreme hyperglycemia, and anoxia independently of freezing. In response to low oxygen levels, wood frogs strategically reduce their metabolic rates and allocate the finite amount of intracellular fuel available to pro-survival processes while reducing or interrupting all others. In this study, the involvement of advanced glycation end products (AGEs) and the high mobility group box 1 (HMGB1) protein in activating RAGE (AGE receptor) were investigated. The results show that freezing, anoxia and dehydration induced the expression of total HMGB1 and its acetylation in the heart. RAGE levels were induced in response to all stress conditions, which resulted in differential regulation of the ETS1 transcription factor. While the nuclear localization of total ETS1 was not affected, the DNA binding activity of total and its active form increased in response to freezing and dehydration but not in response to anoxia. Current results indicate that ETS1 acts as a transcriptional activator for peroxiredoxin 1 in response to freezing but acts as a transcriptional repressor of several nuclear-encoded mitochondrial genes in response to all stresses. Altogether, current results show that the HMGB1/RAGE axis may activate ETS1 and that this activation could result in both transcriptional activation and/or repression in a stress-dependent manner.
Collapse
Affiliation(s)
- Rasha Al-Attar
- Institude of Biochemistry and Department of Biology, Carleton University, Ottawa, ON K1S-5B6, Canada
| | - Kenneth B Storey
- Institude of Biochemistry and Department of Biology, Carleton University, Ottawa, ON K1S-5B6, Canada.
| |
Collapse
|
19
|
MondoA:MLX complex regulates glucose-dependent gene expression and links to circadian rhythm in liver and brain of the freeze-tolerant wood frog, Rana sylvatica. Mol Cell Biochem 2020; 473:203-216. [PMID: 32638259 DOI: 10.1007/s11010-020-03820-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/27/2020] [Indexed: 10/23/2022]
Abstract
The wood frog, Rana sylvatica, is one of only a few vertebrate species that display natural freeze tolerance. Frogs survive the freezing of about two-thirds of their body water as extracellular ice over the winter months. Multiple adaptations support freeze tolerance including metabolic rate depression and the production of huge amounts of glucose (often 200 mM or more) as a cryoprotectant that protects cells from freeze damage. To understand how high glucose levels affect gene expression, we studied MondoA, a glucose sensing transcription factor, and its partner MLX (Max-like protein) to assess their ability to modulate the expression of genes involved in glucose metabolism and circadian rhythm. Wood frog liver and brain tissues were analyzed, assessing protein levels, nuclear distribution, and DNA binding activity of MondoA:MLX during freezing (24 h at - 2.5 °C) and subsequent thawing (8 h returned to 5 °C), as compared with 5 °C controls. Downstream targets of MondoA:MLX were also evaluated: TXNIP (thioredoxin interacting protein), ARRDC4 (arrestin domain containing 4), HK-2 (hexokinase-2), PFKFB-3 (6-phosphofructo-2-kinase isozyme 3) and KLF-10 (Kruppel-like factor-10). Both KLF-10 and PFKFB-3 are also involved in circadian dependant regulation which was also explored in the current study via analysis of BMAL-1 (aryl hydrocarbon receptor nuclear translocator-like protein 1) and CLOCK (circadian locomotor output cycles kaput) proteins. Our data establish the MondoA-MLX complex as active under the hyperglycemic conditions in liver to regulate glucose metabolism and may also link to circadian rhythm in liver via KLF-10 and PFKFB-3 but not in brain.
Collapse
|
20
|
Wu CW, Tessier SN, Storey KB. Dehydration stress alters the mitogen-activated-protein kinase signaling and chaperone stress response in Xenopus laevis. Comp Biochem Physiol B Biochem Mol Biol 2020; 246-247:110461. [PMID: 32497588 DOI: 10.1016/j.cbpb.2020.110461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/20/2020] [Accepted: 05/29/2020] [Indexed: 10/24/2022]
Abstract
In arid conditions, the African Clawed frog Xenopus laevis enters a state of estivation dormancy as an adaptive survival strategy. Under estivation, X. laevis experience severe dehydration stress as 25-35% of total body water is lost. Dehydration in X. laevis can lead to periods of hypoxia due to elevated blood viscosity that impedes tissue perfusion. To understand how X. laevis survives under such stress, we studied the regulation pattern of key mitogen-activated protein kinases (MAPK) and their downstream transcription factors, along with several heat shock proteins in the oxygen sensitive brain and heart tissue of X. laevis under dehydration stress. Our study revealed that the activation phosphorylation residues of MAPK including JNK and MSK and their downstream transcription factors c-Jun and ATF2 are significantly decreased in the heart under dehydration. Given that JNK, c-Jun, and ATF2 are known positive regulators of apoptosis, this regulatory pattern suggest that a state of pro-survival signals may be established in the dehydrated heart. In support of this, protein levels of HSP60, a pro-apoptotic mitochondrial chaperone, was also downregulated in the heart in response to dehydration stress. In the brain tissue, most proteins remain unchanged with the exception of the apoptosis regulating p53 transcription factor, which showed a significant decrease in its activating phosphorylation residue under dehydration. Overall, our study revealed that in the Xenopus brain and heart, a specific suppression pattern of MAPK, transcription factors, and HSP takes place to potentially establish a state of pro-survival under dehydration stress.
Collapse
Affiliation(s)
- Cheng-Wei Wu
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, 52 Campus Drive, University of Saskatchewan, SK S7N 5B4, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
| | - Shannon N Tessier
- BioMEMS Resource Center & Center for Engineering in Medicine, Massachusetts General Hospital & Harvard Medical School, 114 16th Street, Charlestown, MA 02129, USA
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa K1S 5B6, Canada.
| |
Collapse
|
21
|
do Amaral MCF, Frisbie J, Crum RJ, Goldstein DL, Krane CM. Hepatic transcriptome of the freeze-tolerant Cope's gray treefrog, Dryophytes chrysoscelis: responses to cold acclimation and freezing. BMC Genomics 2020; 21:226. [PMID: 32164545 PMCID: PMC7069055 DOI: 10.1186/s12864-020-6602-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 02/20/2020] [Indexed: 11/10/2022] Open
Abstract
Background Cope’s gray treefrog, Dryophytes chrysoscelis, withstands the physiological challenges of corporeal freezing, partly by accumulating cryoprotective compounds of hepatic origin, including glycerol, urea, and glucose. We hypothesized that expression of genes related to cryoprotectant mobilization and stress tolerance would be differentially regulated in response to cold. Using high-throughput RNA sequencing (RNA-Seq), a hepatic transcriptome was generated for D. chrysoscelis, and gene expression was compared among frogs that were warm-acclimated, cold-acclimated, and frozen. Results A total of 159,556 transcripts were generated; 39% showed homology with known transcripts, and 34% of all transcripts were annotated. Gene-level analyses identified 34,936 genes, 85% of which were annotated. Cold acclimation induced differential expression both of genes and non-coding transcripts; freezing induced few additional changes. Transcript-level analysis followed by gene-level aggregation revealed 3582 differentially expressed genes, whereas analysis at the gene level revealed 1324 differentially regulated genes. Approximately 3.6% of differentially expressed sequences were non-coding and of no identifiable homology. Expression of several genes associated with cryoprotectant accumulation was altered during cold acclimation. Of note, glycerol kinase expression decreased with cold exposure, possibly promoting accumulation of glycerol, whereas glucose export was transcriptionally promoted by upregulation of glucose-6-phosphatase and downregulation of genes of various glycolytic enzymes. Several genes related to heat shock protein response, DNA repair, and the ubiquitin proteasome pathway were upregulated in cold and frozen frogs, whereas genes involved in responses to oxidative stress and anoxia, both potential sources of cellular damage during freezing, were downregulated or unchanged. Conclusion Our study is the first to report transcriptomic responses to low temperature exposure in a freeze-tolerant vertebrate. The hepatic transcriptome of Dryophytes chrysoscelis is responsive to cold and freezing. Transcriptomic regulation of genes related to particular pathways, such as glycerol biosynthesis, were not all regulated in parallel. The physiological demands associated with cold and freezing, as well as the transcriptomic responses observed in this study, are shared with several organisms that face similar ecophysiological challenges, suggesting common regulatory mechanisms. The role of transcriptional regulation relative to other cellular processes, and of non-coding transcripts as elements of those responses, deserve further study.
Collapse
Affiliation(s)
- M Clara F do Amaral
- Department of Biology, Mount St. Joseph University, 5701 Delhi Ave, Cincinnati, OH, 45233, USA
| | - James Frisbie
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH, 45435, USA
| | - Raphael J Crum
- Department of Biology, University of Dayton, 300 College Park Ave, Dayton, OH, 45469, USA
| | - David L Goldstein
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH, 45435, USA
| | - Carissa M Krane
- Department of Biology, University of Dayton, 300 College Park Ave, Dayton, OH, 45469, USA.
| |
Collapse
|
22
|
Al-Attar R, Storey KB. Suspended in time: Molecular responses to hibernation also promote longevity. Exp Gerontol 2020; 134:110889. [PMID: 32114078 DOI: 10.1016/j.exger.2020.110889] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/16/2022]
Abstract
Aging in most animals is an inevitable process that causes or is a result of physiological, biochemical, and molecular changes in the body, and has a strong influence on an organism's lifespan. Although advancement in medicine has allowed humans to live longer, the prevalence of age-associated medical complications is continuously burdening older adults worldwide. Current animal models used in research to study aging have provided novel information that has helped investigators understand the aging process; however, these models are limiting. Aging is a complex process that is regulated at multiple biological levels, and while a single manipulation in these models can provide information on a process, it is not enough to understand the global regulation of aging. Some mammalian hibernators live up to 9.8-times higher than their expected average lifespan, and new research attributes this increase to their ability to hibernate. A common theme amongst these mammalian hibernators is their ability to greatly reduce their metabolic rate to a fraction of their normal rate and initiate cytoprotective responses that enable their survival. Metabolic rate depression is strictly regulated at different biological levels in order to enable the animal to not only survive, but to also do so by relying mainly on their limited internal fuels. As such, understanding both the global and specific regulatory mechanisms used to promote survival during hibernation could, in theory, allow investigators to have a better understanding of the aging process. This can also allow pharmaceutical industries to find therapeutics that could delay or reverse age-associated medical complications and promote healthy aging and longevity in humans.
Collapse
Affiliation(s)
- Rasha Al-Attar
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada.
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada.
| |
Collapse
|
23
|
Al-attar R, Wu CW, Biggar KK, Storey KB. Carb-Loading: Freeze-Induced Activation of the Glucose-Responsive ChREBP Transcriptional Network in Wood Frogs. Physiol Biochem Zool 2020; 93:49-61. [DOI: 10.1086/706463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Storey JM, Storey KB. In defense of proteins: Chaperones respond to freezing, anoxia, or dehydration stress in tissues of freeze tolerant wood frogs. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2019; 331:392-402. [PMID: 31276323 DOI: 10.1002/jez.2306] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/07/2019] [Accepted: 06/07/2019] [Indexed: 01/02/2023]
Abstract
Wood frogs (Rana sylvatica LeConte) are the major model for studies of natural freeze tolerance by ectothermic vertebrates. Multiple biochemical adaptations support winter freezing survival but, to date, the protective role of chaperone proteins has received little attention. The present study analyzes responses to freezing, anoxia or dehydration exposures and recovery from these stresses by chaperone proteins in six wood frog organs: Five heat shock proteins (Hsc70, Hsp110, Hsp60, Hsp40, and Hsp10) and two glucose-regulated proteins (Grp78 and Grp94) were assessed. Hsc70 was upregulated in liver, muscle, heart and kidney (1.5-2.0 fold) during freezing and levels of its partner proteins also rose (Hsp110 in three tissues and Hsp40 in four tissues), these responses aligning most closely with comparable responses to anoxia rather than to dehydration. The resident chaperones of the endoplasmic reticulum (Grp78 and Grp94) also rose during freezing in liver and muscle (1.4-1.8 fold) but were suppressed in heart and skin, patterns that generally differed from responses to anoxia or dehydration. Elevated GRPs in liver may support the production and secretion of novel freeze responsive proteins. Increased levels of mitochondrial Hsp60 and Hsp10 (1.5-2.2 fold) occurred in most tissues during freezing and generally mimicked responses to anoxia. Overall, this study indicates that increased levels of chaperone proteins resident in multiple subcellular compartments contribute to stabilizing the cellular proteome during whole body freezing of wood frogs. These responses are probably derived from pre-existing amphibian defenses for stabilizing the proteome under environmental low oxygen or dehydration stresses.
Collapse
Affiliation(s)
- Janet M Storey
- Department of Biology, Carleton University, Ottawa, Canada
| | | |
Collapse
|
25
|
Nguyen VC, Deck CA, Pamenter ME. Naked mole rats reduce the expression of ATP-dependent but not ATP-independent heat shock proteins in acute hypoxia. J Exp Biol 2019; 222:jeb.211243. [DOI: 10.1242/jeb.211243] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/18/2019] [Indexed: 01/02/2023]
Abstract
Naked mole rats (NMRs) are one of the most hypoxia-tolerant mammals identified and putatively experience intermittent and severe hypoxia in their underground burrows. Systemic physiological adaptions to hypoxia have begun to be investigated in this species; however, the cellular adaptations that underlie this tolerance remain poorly understood. Hypoxia compromises cellular energy production; and the maintenance of protein integrity when ATP generation is limited poses a major challenge. Heat shock proteins (HSPs) are cellular chaperones that are cytoprotective during hypoxia and we hypothesized that their expression would increase during acute hypoxia in NMRs. To test this hypothesis, we used qPCR and Western blot approaches to measure changes in gene and protein expression, respectively, of HSP27, HSP40, HSP70, and HSP90 in the brain, heart, liver, and temporalis muscle from NMRs following exposure to normoxia (21% O2) or hypoxia (7% O2 for 4, 12, or 24 hrs). Contrary to our expectations, we observed significant global reductions of ATP-dependant HSP70 and HSP90 (83% and 78%, respectively) after 24 hrs of hypoxia. Conversely, the expression of ATP-independent HSP27 and HSP40 proteins remained constant throughout the 24-hr hypoxic treatment in brain, heart and muscle. However, with prolonged hypoxia (24 hrs), the expression of HSP27 and HSP40 genes in these tissues was also reduced, suggesting that the protein expression of these chaperones may also eventually decrease in hypoxia. These results suggest that energy conservation is prioritized over cytoprotective protein chaperoning in NMR tissues during acute hypoxia. This unique adaptation may help NMRs to minimize energy expenditure while still maintaining proteostasis in hypoxia.
Collapse
Affiliation(s)
- Vu Chau Nguyen
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Courtney A. Deck
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
- North Carolina State University, Raleigh, North Carolina, USA
| | - Matthew E. Pamenter
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| |
Collapse
|