1
|
Avagimyan A, Pogosova N, Kakturskiy L, Sheibani M, Challa A, Kogan E, Fogacci F, Mikhaleva L, Vandysheva R, Yakubovskaya M, Faggiano A, Carugo S, Urazova O, Jahanbin B, Lesovaya E, Polana S, Kirsanov K, Sattar Y, Trofimenko A, Demura T, Saghazadeh A, Koliakos G, Shafie D, Alizadehasl A, Cicero A, Costabel JP, Biondi-Zoccai G, Ottaviani G, Sarrafzadegan N. Doxorubicin-related cardiotoxicity: review of fundamental pathways of cardiovascular system injury. Cardiovasc Pathol 2024; 73:107683. [PMID: 39111556 DOI: 10.1016/j.carpath.2024.107683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 08/29/2024] Open
Abstract
Over the years, advancements in the field of oncology have made remarkable strides in enhancing the efficacy of medical care for patients with cancer. These modernizations have resulted in prolonged survival and improved the quality of life for these patients. However, this progress has also been accompanied by escalation in mortality rates associated with anthracycline chemotherapy. Anthracyclines, which are known for their potent antitumor properties, are notorious for their substantial cardiotoxic potential. Remarkably, even after 6 decades of research, a conclusive solution to protect the cardiovascular system against doxorubicin-induced damage has not yet been established. A comprehensive understanding of the pathophysiological processes driving cardiotoxicity combined with targeted research is crucial for developing innovative cardioprotective strategies. This review seeks to explain the mechanisms responsible for structural and functional alterations in doxorubicin-induced cardiomyopathy.
Collapse
Affiliation(s)
- Ashot Avagimyan
- Department of Internal Desiases Propedeutics, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia.
| | - Nana Pogosova
- Deputy Director of Research and Preventive Cardiology, National Medical Research Centre of Cardiology named after E. Chazov, Moscow, Russia; Head of Evidence Based Medicine Department, Patrice Lumumba Peoples' Friendship University of Russia (RUDN), Moscow, Russia
| | - Lev Kakturskiy
- A. P. Avtsyn Research Institute of Human Morphology, Petrovskiy RNCS, Moscow, Russia
| | - Mohammad Sheibani
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Teharan, Iran; Razi Drug Research Centre, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abhiram Challa
- Department of Cardiology, West Virginia University, Morgantown, WV, USA
| | - Eugenia Kogan
- Institute of Clinical Morphology and Digital Pathology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Federica Fogacci
- Atherosclerosis and Metabolic Disorders Research Unit, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Liudmila Mikhaleva
- A. P. Avtsyn Research Institute of Human Morphology, Petrovskiy RNCS, Moscow, Russia
| | - Rositsa Vandysheva
- A. P. Avtsyn Research Institute of Human Morphology, Petrovskiy RNCS, Moscow, Russia
| | - Marianna Yakubovskaya
- Chemical Cancerogenesis Department, Institute of Cancerogenesis, National Medical Research Center of Oncology after N. N. Blokhina, Moscow, Russia; Laboratory of Single Cell Biology, Patrice Lumumba Peoples' Friendship University of Russia (RUDN), Moscow, Russia
| | - Andrea Faggiano
- Department of Cardio-Thoracic-Vascular Area, Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Stefano Carugo
- Department of Cardio-Thoracic-Vascular Area, Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Olga Urazova
- Head of Pathophysiology Department, Siberian State Medical University, Tomsk, Russia
| | - Behnaz Jahanbin
- Department of Pathology, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Ekaterina Lesovaya
- Chemical Cancerogenesis Department, Institute of Cancerogenesis, National Medical Research Center of Oncology after N. N. Blokhina, Moscow, Russia; Laboratory of Single Cell Biology, Patrice Lumumba Peoples' Friendship University of Russia (RUDN), Moscow, Russia; Department of Oncology, Ryazan State Medical University after I. P. Pavlov, Ryazan, Russia
| | | | - Kirill Kirsanov
- Chemical Cancerogenesis Department, Institute of Cancerogenesis, National Medical Research Center of Oncology after N. N. Blokhina, Moscow, Russia; Laboratory of Single Cell Biology, Patrice Lumumba Peoples' Friendship University of Russia (RUDN), Moscow, Russia
| | - Yasar Sattar
- Department of Cardiology, West Virginia University, Morgantown, WV, USA
| | - Artem Trofimenko
- Department of Pathophysiology, Kuban State Medical University, Krasnodar, Russia
| | - Tatiana Demura
- Institute of Clinical Morphology and Digital Pathology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Amene Saghazadeh
- Department of Pathology, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - George Koliakos
- Head of Laboratory of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Davood Shafie
- Director of Heart Failure Centre, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azin Alizadehasl
- Head of Cardio-Oncology Department and Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Arrigo Cicero
- Hypertension and Cardiovascular Risk Research Unit, Alma Mater Studiorum University of Bologna, Bologna, Italy; IRCCS Policlinico S. Orsola-Malpighi di Bologna, Bologna, Italy
| | - Juan Pablo Costabel
- Chief of Coronary Care Unit, Buenos Aires Institute of Cardiology, Buenos Aires, Argentina
| | - Giuseppe Biondi-Zoccai
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy; Maria Cecilia Hospital, GVM Care and Research, Cotignola, Italy
| | - Giulia Ottaviani
- Anatomic Pathology, Lino Rossi Research Center, Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
| | - Nizal Sarrafzadegan
- Director of Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran; School of Population and Public Health, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
2
|
Wang Y, Qiu J, Yan H, Zhang N, Gao S, Xu N, Wang C, Lou H. The Bach1/HO-1 pathway regulates oxidative stress and contributes to ferroptosis in doxorubicin-induced cardiomyopathy in H9c2 cells and mice. Arch Toxicol 2024; 98:1781-1794. [PMID: 38573338 DOI: 10.1007/s00204-024-03697-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/31/2024] [Indexed: 04/05/2024]
Abstract
Doxorubicin (DOX) is one of the most frequently used chemotherapeutic drugs belonging to the class of anthracyclines. However, the cardiotoxic effects of anthracyclines limit their clinical use. Recent studies have suggested that ferroptosis is the main underlying pathogenetic mechanism of DOX-induced cardiomyopathy (DIC). BTB-and-CNC homology 1 (Bach1) acts as a key role in the regulation of ferroptosis. However, the mechanistic role of Bach1 in DIC remains unclear. Therefore, this study aimed to investigate the underlying mechanistic role of Bach1 in DOX-induced cardiotoxicity using the DIC mice in vivo (DOX at cumulative dose of 20 mg/kg) and the DOX-treated H9c2 cardiomyocytes in vitro (1 μM). Our results show a marked upregulation in the expression of Bach1 in the cardiac tissues of the DOX-treated mice and the DOX-treated cardiomyocytes. However, Bach1-/- mice exhibited reduced lipid peroxidation and less severe cardiomyopathy after DOX treatment. Bach1 knockdown protected against DOX-induced ferroptosis in both in vivo and in vitro models. Ferrostatin-1 (Fer-1), a potent inhibitor of ferroptosis, significantly alleviated DOX-induced cardiac damage. However, the cardioprotective effects of Bach1 knockdown were reversed by pre-treatment with Zinc Protoporphyrin (ZnPP), a selective inhibitor of heme oxygenase-1(HO-1). Taken together, these findings demonstrated that Bach1 promoted oxidative stress and ferroptosis through suppressing the expression of HO-1. Therefore, Bach1 may present as a promising new therapeutic target for the prevention and early intervention of DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Yanwei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Department of Radiology, Shandong Provincial Hospital, No. 324 Jingwu Road, Jinan, 250021, Shandong, China
| | - Jingru Qiu
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Hua Yan
- Department of Gastroenterology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Nan Zhang
- Research Center of Translational Medicine, Breast Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, China
| | - Shixuan Gao
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Ning Xu
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Cuiyan Wang
- Department of Radiology, Shandong Provincial Hospital, No. 324 Jingwu Road, Jinan, 250021, Shandong, China
| | - Haiyan Lou
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, China.
| |
Collapse
|
3
|
Zeng G, Lian C, Li W, An H, Han Y, Fang D, Zheng Q. Upregulation of FAM129B protects cardiomyocytes from hypoxia/reoxygenation-induced injury by inhibiting apoptosis, oxidative stress, and inflammatory response via enhancing Nrf2/ARE activation. ENVIRONMENTAL TOXICOLOGY 2022; 37:1018-1031. [PMID: 34995000 DOI: 10.1002/tox.23461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 12/02/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Family with sequence similarity 129, member B (FAM129B) has been identified as a novel cytoprotective protein that facilitates the survival of detrimentally stimulated cells. However, whether FAM129B is involved in regulating cardiomyocyte survival after myocardial ischemia-reperfusion injury is unknown. The goal of this work was to evaluate the potential role of FAM129B in regulating hypoxia/reoxygenation (H/R)-induced cardiomyocyte injury in vitro. We demonstrated that exposure to H/R markedly downregulated the expression of FAM129B in cardiomyocytes. Functional experiments revealed that the upregulation of FAM129B improved H/R-exposed cardiomyocyte viability, and ameliorated H/R-induced cardiomyocyte apoptosis, the generation of reactive oxygen species (ROS), and pro-inflammatory cytokine release. The upregulation of FAM129B significantly increased the nuclear expression of nuclear factor-erythroid 2-related factor 2 (Nrf2), and reinforced Nrf2/antioxidant response element (ARE) activation in H/R-exposed cardiomyocytes. Moreover, FAM129B modulates Nrf2/ARE signaling in a Kelchlike ECH-associated protein 1-dependent manner. Notably, the inhibition of Nrf2 significantly blocked FAM129B-overexpression-induced cardioprotective effects in H/R-exposed cardiomyocytes. In summary, the findings of our work demonstrate that the upregulation of FAM129B ameliorates H/R-induced cardiomyocyte injury via enhancing Nrf2/ARE activation. Thus, our study indicates that FAM129B may play a role in myocardial ischemia-reperfusion injury and has the potential to be used as a cardioprotective target.
Collapse
Affiliation(s)
- Guangwei Zeng
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
- Section 2, Department of Cardiology, Xi'an International Medical Center Hospital, Shaanxi, China
| | - Cheng Lian
- Section 2, Department of Cardiology, Xi'an International Medical Center Hospital, Shaanxi, China
| | - Wei Li
- Section 2, Department of Cardiology, Xi'an International Medical Center Hospital, Shaanxi, China
| | - Huixian An
- Section 2, Department of Cardiology, Xi'an International Medical Center Hospital, Shaanxi, China
| | - Yang Han
- Section 2, Department of Cardiology, Xi'an International Medical Center Hospital, Shaanxi, China
| | - Dong Fang
- Section 2, Department of Cardiology, Xi'an International Medical Center Hospital, Shaanxi, China
| | - Qiangsun Zheng
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| |
Collapse
|
4
|
Zhu S, Xu J, Chen H, Lv W. Ultrasonic-Assisted Enzymolysis Extraction and Protective Effect on Injured Cardiomyocytes in Mice of Flavonoids from Prunus mume Blossom. Molecules 2021; 26:molecules26195818. [PMID: 34641361 PMCID: PMC8510299 DOI: 10.3390/molecules26195818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/15/2021] [Accepted: 09/22/2021] [Indexed: 11/22/2022] Open
Abstract
Prunus mume blossom is an edible flower that has been used in traditional Chinese medicine for thousands of years. Flavonoids are one of the most active substances in Prunus mume blossoms. The optimal ultrasonic-assisted enzymatic extraction of flavonoids from Prunus mume blossom (FPMB), the components of FPMB, and its protective effect on injured cardiomyocytes were investigated in this study. According to our results, the optimal extraction process for FPMB is as follows: cellulase at 2.0%, ultrasonic power at 300 W, ultrasonic enzymolysis for 30 min, and an enzymolysis temperature of 40 °C. FPMB significantly promoted the survival rate of cardiomyocytes and reduced the concentration of reactive oxygen species (ROS). FPMB also improved the activities of proteases caspase-3, caspase-8, and caspase-9 in cardiomyocytes. The cardiomyocyte apoptosis rate in mice was significantly reduced by exposure to FPMB. These results suggest that the extraction rate of FPMB may be improved by an ultrasonic-assisted enzymatic method. FPMB has a protective effect on the injured cardiomyocytes.
Collapse
Affiliation(s)
- Shengnan Zhu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China;
| | - Jicheng Xu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China;
- Correspondence: ; Tel.: +86-1-385-530-3015
| | - Huizhi Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Weiqiao Lv
- College of Engineering, China Agricultural University, Beijing 100083, China;
| |
Collapse
|
5
|
Zhang H, Wang Z, Liu Z, Du K, Lu X. Protective Effects of Dexazoxane on Rat Ferroptosis in Doxorubicin-Induced Cardiomyopathy Through Regulating HMGB1. Front Cardiovasc Med 2021; 8:685434. [PMID: 34336950 PMCID: PMC8318065 DOI: 10.3389/fcvm.2021.685434] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/31/2021] [Indexed: 01/15/2023] Open
Abstract
Dexrazoxane (DXZ) reduces cytotoxicity caused by Doxorubicin (DOX). However, the mechanism of DXZ in ferroptosis and cardiomyopathy remains unclear. This research, therefore, explores the role and mechanism of DXZ in DOX-induced ferroptosis and cardiomyopathy in rats. Kaplan–Meier survival analysis was performed in rats treated by DOX in combination with ferroptosis inhibitor (FER-1) or other cell death–associated inhibitors. The ferroptosis, cardiotoxicity, and expression of high mobility group box 1 (HMGB1) in rats treated by DOX in combination with FER-1 or with DXZ were determined by hematoxylin and eosin staining, echocardiographic analysis, and quantitative real-time PCR. The ferroptosis in DOX-treated rats that received HMGB1 knockdown or overexpression was further detected using molecular experiments. Finally, the viability, level of malondialdehyde (MDA), and expressions of ferroptosis-related markers (PTGS2, GPX4, and FTH1) of rat cardiomyocyte H9c2 exposed to DOX combined with FER-1, zVAD (an apoptosis inhibitor), DXZ, or not were detected by performing molecular experiments. FER-1 increased the survival of the rats induced by DOX. The DOX-induced ferroptosis and cardiotoxicity could be reversed by FER-1 or DXZ. HMGB1 was induced by DOX but was inhibited by DXZ or FER-1. Overexpression of HMGB1 promoted the ferroptosis and cardiotoxicity induced by DOX in the rats although silencing of HMGB1 showed opposite effects. The data indicate that DOX suppressed the viability and increased the MDA level in H9c2 cells in a dose-dependent manner. Moreover, DOX-induced increase of PTGS2 and decrease of GPX4 and FTH1 in H9c2 cells was reversed by DXZ or FER-1. Therefore, DXZ has protective effects on ferroptosis and cardiomyopathy in rats through regulating HMGB1.
Collapse
Affiliation(s)
- Haiyan Zhang
- Department of Cardiology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Zheng Wang
- Department of Blood Transfusion, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Zhengxia Liu
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Kang Du
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Xiang Lu
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|