1
|
Lee D, Lee JH, Kim KH, Choi CY, Kang JC, Kim JH. Expression of antioxidant and stress-related genes in olive flounder, Paralichthys olivaceus exposed to high temperatures after pre-heating. Comp Biochem Physiol C Toxicol Pharmacol 2025; 291:110147. [PMID: 39965750 DOI: 10.1016/j.cbpc.2025.110147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/25/2025] [Accepted: 02/12/2025] [Indexed: 02/20/2025]
Abstract
The rising sea surface temperatures driven by climate change cause thermal stress, leading to oxidative stress, metabolic disorders, and increased disease susceptibility, thereby impairing the physiological functions of fish. Therefore, understanding the adaptation mechanisms of fish to high temperatures is essential for mitigating the negative impacts of thermal stress on aquaculture productivity and fish health. In this study, Paralichthys olivaceus were subjected to high temperatures following pre-heating to evaluate the advantages of pre-stimulation prior to exposure to the critical temperature. The P. olivaceus were exposed to four groups; Acute (subjected to acute heat shock at 32 °C), AH-S (exposed to acquired heat shock at 28 °C followed by short recovery of 2 h and subsequent heat shock at 32 °C), AH-L (exposed to acquired heat shock at 28 °C followed by long recovery of 2 days and subsequent heat shock at 32 °C) and AH-SL (combined of AH-S and AH-L protocols). In terms of antioxidant response, mRNA expression (caspase 10, thioredoxin (Trx), superoxide dismutase (SOD), peroxiredoxin (Prx), glutathione-S-transferase (GST), and transferrin (TF)) and enzyme activities (SOD, CAT, and GST) were significantly upregulated in P. olivaceus pre-heated prior to high-temperature exposure (AH-S, AH-L, and AH-SL groups). In addition, the stress gene expressions such as heat shock protein 70 (HSP70), HSP60, HSP90, warm-temperature-acclimation-associated 65-kDa protein (Wap65-1), and glucose-regulated protein 78 (GRP78) was significantly upregulated in AH-S, AH-L and AH-SL groups. Pre-heating has been found to be effective in mitigating thermal stress, with the efficacy varying according to the differences in pre-heating methods.
Collapse
Affiliation(s)
- Dain Lee
- Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje, South Korea
| | - Ju-Hyeong Lee
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, South Korea
| | - Kyung-Hee Kim
- Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje, South Korea
| | - Cheol Young Choi
- Division of Marine BioScience, National Korea Maritime and Ocean University, Busan 49112, South Korea.
| | - Ju-Chan Kang
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, South Korea.
| | - Jun-Hwan Kim
- Department of Aquatic Life Medicine, Jeju National University, Jeju 63243, Republic of Korea; Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea.
| |
Collapse
|
2
|
Martínez D, Garrido M, Ponce C, Zumelzu Y, Coronado J, Santibañez N, Quilapi AM, Vargas-Lagos C, Pontigo JP, Oyarzún-Salazar R, Godoy M, Enríquez R, Muñoz JL, Vargas-Chacoff L, Romero A. Comparative analysis of the stress and immune responses in Atlantic salmon (Salmo salar) inoculated with live and inactivated Piscirickettsia salmonis. FISH & SHELLFISH IMMUNOLOGY 2025; 157:110111. [PMID: 39753155 DOI: 10.1016/j.fsi.2024.110111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/11/2024] [Accepted: 12/31/2024] [Indexed: 01/26/2025]
Abstract
Piscirickettsiosis causes the highest mortality in Atlantic salmon (Salmo salar) farming, and prophylactic treatment has not provided complete protection to date. In this study, we analyzed the immune and metabolic responses of Atlantic salmon inoculated with live and inactivated Piscirickettsia salmonis, monitoring plasma markers related to immune and stress responses. The fish were inoculated with inactivated P. salmonis, live P. salmonis, and culture medium (as control group). Blood and head-kidney samples were collected on days 3, 7, and 14 post-inoculations (dpi). Glucose and lactate levels did not show statistical differences, while cortisol levels increased from day 3 to day 14 in fish inoculated with live P. salmonis and only at 7 dpi in those inoculated with inactivated P. salmonis. Furthermore, anti-P. salmonis IgM-type immunoglobulins increased up to 14 dpi in fish inoculated with live P. salmonis but showed no change in those inoculated with inactivated P. salmonis. Meanwhile, immune markers involved in type I responses (tnfα-1, ifnγ, and cd8β) and regulatory responses (il10, tgfβ-1, and cd4-1) displayed differences between fish inoculated with live and inactivated P. salmonis. In fish inoculated with live P. salmonis, there was a clear pattern of increase at both 3 and 14 dpi, while those inoculated with inactivated P. salmonis showed a greater increase at 3 dpi. Our findings suggest that the nature of antigen may influence humoral immunity (anti-P. salmonis IgM) and the gene expression of markers involved in type I and regulatory immune responses in Atlantic salmon.
Collapse
Affiliation(s)
- Danixa Martínez
- Laboratorio Institucional de Investigación, Facultad de Ciencias de la Naturaleza, Universidad San Sebastián, Puerto Montt, Chile.
| | - Monserrat Garrido
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Naturaleza, Universidad San Sebastián, Puerto Montt, Chile
| | - Carlos Ponce
- Escuela de Tecnología Médica, Facultad de la Salud, Universidad Santo Tomás, Osorno, Chile
| | - Yeraldine Zumelzu
- Escuela de Tecnología Médica, Facultad de la Salud, Universidad Santo Tomás, Osorno, Chile
| | - Jose Coronado
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Natacha Santibañez
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Ana María Quilapi
- Escuela de Tecnología Médica, Facultad de la Salud, Universidad Santo Tomás, Osorno, Chile
| | - Carolina Vargas-Lagos
- Carrera de Tecnología Médica, Departamento de Salud, Universidad de los Lagos, Osorno, Chile
| | - Juan Pablo Pontigo
- Laboratorio Institucional de Investigación, Facultad de Ciencias de la Naturaleza, Universidad San Sebastián, Puerto Montt, Chile
| | - Ricardo Oyarzún-Salazar
- Laboratorio Institucional de Investigación, Facultad de Ciencias de la Naturaleza, Universidad San Sebastián, Puerto Montt, Chile
| | - Marcos Godoy
- Centro de Investigaciones Biológicas Aplicadas (CIBA), Puerto Montt, Chile
| | - Ricardo Enríquez
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Jose Luis Muñoz
- Centro de Investigación y Desarrollo i∼mar, Universidad de los Lagos, Puerto Montt, Chile
| | - Luis Vargas-Chacoff
- Laboratorio de Fisiología de Peces, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile; Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems, BASE, Universidad Austral de Chile, Valdivia, Chile.
| | - Alex Romero
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile; Centro Fondap Interdisciplinary Center for Aquaculture Research (INCAR), Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
3
|
Saravia J, Nualart D, Paschke K, Pontigo JP, Navarro JM, Vargas-Chacoff L. Temperature and immune challenges modulate the transcription of genes of the ubiquitin and apoptosis pathways in two high-latitude Notothenioid fish across the Antarctic Polar Front. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1429-1443. [PMID: 38658493 DOI: 10.1007/s10695-024-01348-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
Thermal variations due to global climate change are expected to modify the distributions of marine ectotherms, with potential pathogen translocations. This is of particular concern at high latitudes where cold-adapted stenothermal fish such as the Notothenioids occur. However, little is known about the combined effects of thermal fluctuations and immune challenges on the balance between cell damage and repair processes in these fish. The aim of this study was to determine the effect of thermal variation on specific genes involved in the ubiquitination and apoptosis pathways in two congeneric Notothenioid species, subjected to simulated bacterial and viral infections. Adult fish of Harpagifer bispinis and Harpagifer antarcticus were collected from Punta Arenas (Chile) and King George Island (Antarctica), respectively, and distributed as follows: injected with PBS (control), LPS (2.5 mg/kg) or Poly I:C (2 mg/kg) and then submitted to 2, 5 and 8 °C. After 1 week, samples of gills, liver and spleen were taken to evaluate the expression by real-time PCR of specific genes involved in ubiquitination (E3-ligase enzyme) and apoptosis (BAX and SMAC/DIABLO). Gene expression was tissue-dependent and increased with increasing temperature in the gills and liver while showing an opposite pattern in the spleen. Studying a pair of sister species that occur across the Antarctic Polar Front can help us understand the particular pressures of intertidal lifestyles and the effect of temperature in combination with biological stressors on cell damage and repair capacity in a changing environment.
Collapse
Affiliation(s)
- Julia Saravia
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile.
- Laboratorio de Genómica y Ecología Molecular Antártica y Sub-Antártica (LAGEMAS), Universidad Austral de Chile, Valdivia, Chile.
- Centro Fondap de Investigación de Altas Latitudes (Fondap IDEAL), Universidad Austral de Chile, Valdivia, Chile.
- Millenium Institute Biodiversity of Antarctic and Subantarctic Ecosystems, BASE, Universidad Austral de Chile, Valdivia, Chile.
| | - Daniela Nualart
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
- Escuela de Graduados, Programa de Doctorado en Ciencias de La Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile
- Millenium Institute Biodiversity of Antarctic and Subantarctic Ecosystems, BASE, Universidad Austral de Chile, Valdivia, Chile
| | - Kurt Paschke
- Centro Fondap de Investigación de Altas Latitudes (Fondap IDEAL), Universidad Austral de Chile, Valdivia, Chile
- Instituto de Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile
| | - Juan Pablo Pontigo
- Laboratorio Institucional, Facultad de Ciencias de La Naturaleza, Universidad San Sebastián, Puerto Montt, Chile
| | - Jorge M Navarro
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
- Centro Fondap de Investigación de Altas Latitudes (Fondap IDEAL), Universidad Austral de Chile, Valdivia, Chile
| | - Luis Vargas-Chacoff
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile.
- Centro Fondap de Investigación de Altas Latitudes (Fondap IDEAL), Universidad Austral de Chile, Valdivia, Chile.
- Millenium Institute Biodiversity of Antarctic and Subantarctic Ecosystems, BASE, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
4
|
Moore B, Jolly J, Izumiyama M, Kawai E, Ravasi T, Ryu T. Tissue-specific transcriptional response of post-larval clownfish to ocean warming. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168221. [PMID: 37923256 DOI: 10.1016/j.scitotenv.2023.168221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/24/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
Anthropogenically driven climate change is predicted to increase average sea surface temperatures, as well as the frequency and intensity of marine heatwaves in the future. This increasing temperature is predicted to have a range of negative physiological impacts on multiple life-stages of coral reef fish. Nevertheless, studies of early-life stages remain limited, and tissue-specific transcriptomic studies of post-larval coral reef fish are yet to be conducted. Here, in an aquaria-based study we investigate the tissue-specific (brain, liver, muscle, and digestive tract) transcriptomic response of post-larval (20 dph) Amphiprion ocellaris to temperatures associated with future climate change (+3 °C). Additionally, we utilized metatranscriptomic sequencing to investigate how the microbiome of the digestive tract changes at +3 °C. Our results show that the transcriptional response to elevated temperatures is highly tissue-specific, as the number of differentially expressed genes (DEGs) and gene functions varied amongst the brain (102), liver (1785), digestive tract (380), and muscle (447). All tissues displayed DEGs associated with thermal stress, as 23 heat-shock protein genes were upregulated in all tissues. Our results indicate that post-larval clownfish may experience liver fibrosis-like symptoms at +3 °C as genes associated with extracellular matrix structure, oxidative stress, inflammation, glucose transport, and metabolism were all upregulated. We also observe a shift in the digestive tract microbiome community structure, as Vibrio sp. replace Escherichia coli as the dominant bacteria. This shift is coupled with the dysregulation of various genes involved in immune response in the digestive tract. Overall, this study highlights post-larval clownfish will display tissue-specific transcriptomic responses to future increases in temperature, with many potentially harmful pathways activated at +3 °C.
Collapse
Affiliation(s)
- Billy Moore
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Jeffrey Jolly
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Michael Izumiyama
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Erina Kawai
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Timothy Ravasi
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Taewoo Ryu
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan.
| |
Collapse
|
5
|
Martínez D, Nualart D, Loncoman C, Opazo JC, Zabala K, Morera FJ, Mardones GA, Vargas-Chacoff L. Discovery of BbX transcription factor in the patagonian blennie: Exploring expression changes following combined bacterial and thermal stress exposure. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 149:105056. [PMID: 37730191 DOI: 10.1016/j.dci.2023.105056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/10/2023] [Accepted: 09/10/2023] [Indexed: 09/22/2023]
Abstract
High-Mobility Group (HMG) proteins are involved in different processes such as transcription, replication, DNA repair, and immune response. The role of HMG proteins in the immune response of fish has been studied mainly for HMGB1, where its expression can be induced by the stimulation of viral/bacterial PAMPs and can act as a proinflammatory mediator and as a global regulator of transcription in response to temperature. However, for BbX this role remains to be discovered. In this work, we identified the BbX of E. maclovinus and evaluated the temporal expression levels after simultaneous challenge with P. salmonis and thermal stress. Phylogenetic analysis does not significantly deviate from the expected organismal relationships suggesting orthologous relationships and that BbX was present in the common ancestor of the group. BbX mRNA expression levels were very high in the intestinal tissue of E. maclovinus (foregut, midgut, and hindgut). Nevertheless, the protein levels analyzed by WB showed the highest levels of BbX protein in the liver (constitutive expression). On the other hand, the mRNA expression levels of BbX in the liver of E. maclovinus injected with P. salmonis and subjected to thermal stress showed an increase at days 16 and 20 in all treatments applied at 12 °C and 18 °C. Meanwhile, the protein levels quantified by WB showed a statistically significant increase in the HMG-Bbx at all experimental times (4, 8, 12, 16, and 20 dpi). However, at 4 dpi the HMG-Bbx protein levels were much higher than the other days evaluated. The results suggest that BbX protein may be implicated in the response mechanism to temperature and bacterial stimulation in the foregut, midgut, hindgut, and liver, according to our findings at the level of mRNA and protein. Furthermore, our WB analysis suggests an effect of P. salmonis on the expression of this protein that can be observed in condition C+ 12 °C compared to C- 12 °C. Then, there is an effect of temperature that can be evidenced in the condition AM 18 °C and SM 18 °C, compared to AB 18 °C and SB 18 °C at 4, 8, and 12 dpi. We found not differences in the levels of this protein if the thermal stress is achieved through acclimatization or shock. More research is necessary to clarify the importance of this type of HMG in the immune response and thermal tolerance in fish.
Collapse
Affiliation(s)
- Danixa Martínez
- Laboratorio Institucional de Investigación, Facultad de Ciencias de La Naturaleza, Universidad San Sebastián, Puerto Montt, Chile.
| | - Daniela Nualart
- Escuela de Graduados, Programa de Doctorado en Ciencias de La Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile; Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems, BASE, University Austral of Chile, Valdivia, Chile; Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, Casilla 567, Valdivia, Chile
| | - Carlos Loncoman
- Instituto de Bioquímica y Microbiología, Laboratorio de Bioquímica Farmacológica, Virología y Biotecnología, Universidad Austral de Chile, Valdivia, Chile
| | - Juan C Opazo
- Integrative Biology Group, Valdivia, Chile; Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Valdivia, Chile; Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile
| | - Kattina Zabala
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile
| | - Francisco J Morera
- Integrative Biology Group, Valdivia, Chile; Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gonzalo A Mardones
- Integrative Biology Group, Valdivia, Chile; Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile
| | - Luis Vargas-Chacoff
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems, BASE, University Austral of Chile, Valdivia, Chile; Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, Casilla 567, Valdivia, Chile; Integrative Biology Group, Valdivia, Chile.
| |
Collapse
|
6
|
Saravia J, Paschke K, Pontigo JP, Nualart D, Navarro JM, Vargas-Chacoff L. Effects of temperature on the innate immune response on Antarctic and sub-Antarctic fish Harpagifer antarcticus and Harpagifer bispinis challenged with two immunostimulants, LPS and Poly I:C: In vivo and in vitro approach. FISH & SHELLFISH IMMUNOLOGY 2022; 130:391-408. [PMID: 36126838 DOI: 10.1016/j.fsi.2022.09.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/21/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
Rising ocean temperatures due to climate change combined with the intensification of anthropogenic activity can drive shifts in the geographic distribution of species, with the risks of introducing new diseases. In a changing environment, new host-pathogen interactions or changes to existing dynamics represent a major challenge for native species at high latitudes. Notothenioid fish constitute a unique study system since members of this group are found inside and outside Antarctica, are highly adapted to cold and particularly sensitive to temperature increments. However, data about their immune response remains scarce. Here, we aimed to evaluate the innate immune response under thermal stress in two species of Notothenioid fish, Harpagifer antarcticus and Harpagifer bispinis. Adult individuals from both species were collected on King George Island (Antarctica), and Punta Arenas (Chile), respectively. Specimens were assigned to a control group or injected with one of two agents (LPS and Poly I:C) to simulate either a bacterial or viral infection, and subjected to three different temperatures 2, 5 and 8 °C for 1 week. In parallel, we established leukocytes primary cell cultures from head kidney, which were also subjected to the immunostimulants at the same three temperatures, and incubated for 0.5, 1, 3, 6, 12, 24, and 48 h. We evaluated the relative gene expression of genes involved in the innate immune response (TLR1, TLR3, NF-kB, MYD88, IFNGR e IL-8) through real time qPCR. We found differences between species mainly in vivo, where H. antarcticus exhibited upregulation at high temperatures and H. bispinis seemed to have reached their physiological minimum at 2 °C. Although temperature had a strong effect during the in vivo assay for both species, it was negligible for primary cell cultures, which responded primarily to condition and time. Moreover, while leukocytes responded with fluctuations across time points, in vivo both species manifested strong and clear patterns of gene expression. These results highlight the importance of evaluating the effect of multiple stressors and set a precedent for future research.
Collapse
Affiliation(s)
- Julia Saravia
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Centro Fondap de Investigación de Altas Latitudes (Fondap IDEAL), Universidad Austral de Chile, Valdivia, Chile; Escuela de Graduados, Programa de Doctorado en Ciencias de La Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile.
| | - Kurt Paschke
- Centro Fondap de Investigación de Altas Latitudes (Fondap IDEAL), Universidad Austral de Chile, Valdivia, Chile; Instituto de Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile; Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems, BASE, Universidad Austral de Chile, Valdivia, Chile
| | - Juan Pablo Pontigo
- Laboratorio de Biotecnología Aplicada, Facultad de Medicina Veterinaria, Universidad San Sebastián, Puerto Montt, Chile
| | - Daniela Nualart
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Centro Fondap de Investigación de Altas Latitudes (Fondap IDEAL), Universidad Austral de Chile, Valdivia, Chile; Escuela de Graduados, Programa de Doctorado en Ciencias de La Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile; Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems, BASE, Universidad Austral de Chile, Valdivia, Chile
| | - Jorge M Navarro
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Centro Fondap de Investigación de Altas Latitudes (Fondap IDEAL), Universidad Austral de Chile, Valdivia, Chile
| | - Luis Vargas-Chacoff
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Centro Fondap de Investigación de Altas Latitudes (Fondap IDEAL), Universidad Austral de Chile, Valdivia, Chile; Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems, BASE, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
7
|
Díaz-Ibarrola D, Martínez D, Vargas-Lagos C, Saravia J, Vargas-Chacoff L. Transcriptional modulation of immune genes in gut of Sub-Antarctic notothenioid fish Eleginops maclovinus challenged with Francisella noatunensis subsp. noatunensis. FISH & SHELLFISH IMMUNOLOGY 2022; 124:56-65. [PMID: 35367625 DOI: 10.1016/j.fsi.2022.03.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
The search for functional foods that improve the immune response has traditionally been focused on lymphoid tissue and the intestinal mucosa. However, it is unknown whether there is a different immune response in different portions of the gut following exposure to a bacterial pathogen. We challenged Eleginops maclovinus intraperitoneally (i.p) with Francisella noatunensis subsp. noatunensis and measured mRNA transcripts related to innate and adaptive immune responses in different parts of the gut (foregut, midgut and hindgut). We used control (i.p only with bacterial culture medium), low dose (i.p of F. noatunensis at 1 × 101 bact/μL), medium dose (i.p of F. noatunensis at 1 × 105 bact/μL) and high dose (i.p of F. noatunensis at 1 × 1010 bact/μL) groups in our experiments. We sampled fish at days 1, 3, 7, 14, 21, and 28 post-injection. We observed tissue-specific expression of TLR1, TLR5, TLR8, MHCI, MHCII and IgM, and transcription of these immune markers was lower in foregut and higher in midgut and hindgut. We detected Francisella genetic material (DNA) in fish stimulated with a high dose from day 1-28 in foregut, midgut, and hindgut. However, we could only detect Francisella DNA in fish stimulated the medium and low dose at later timepoints in the foregut (21-28 days post injection "dpi") and hindgut (low dose from day 7-28 dpi). Our results suggest that the immune responses to bacterial pathogens occur throughout the gut, but certain segments may be more susceptible to infection because of their cellular morphology (anterior, middle and posterior).
Collapse
Affiliation(s)
- Daniela Díaz-Ibarrola
- Laboratorio de Fisiología de Peces, Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile; Escuela de Graduados, Programa de Doctorado en Ciencias de la Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile.
| | - Danixa Martínez
- Laboratorio de Fisiología de Peces, Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Carolina Vargas-Lagos
- Laboratorio de Fisiología de Peces, Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile
| | - Julia Saravia
- Laboratorio de Fisiología de Peces, Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile; Escuela de Graduados, Programa de Doctorado en Ciencias de la Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile
| | - Luis Vargas-Chacoff
- Laboratorio de Fisiología de Peces, Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile; Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems, BASE, University Austral of Chile, Valdivia, Chile.
| |
Collapse
|
8
|
Effects of acute heat stress on liver damage, apoptosis and inflammation of pikeperch (Sander lucioperca). J Therm Biol 2022; 106:103251. [DOI: 10.1016/j.jtherbio.2022.103251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 03/21/2022] [Accepted: 04/30/2022] [Indexed: 11/22/2022]
|
9
|
Yusof NA, Masnoddin M, Charles J, Thien YQ, Nasib FN, Wong CMVL, Abdul Murad AM, Mahadi NM, Bharudin I. Can heat shock protein 70 (HSP70) serve as biomarkers in Antarctica for future ocean acidification, warming and salinity stress? Polar Biol 2022. [DOI: 10.1007/s00300-022-03006-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractThe Antarctic Peninsula is one of the fastest-warming places on Earth. Elevated sea water temperatures cause glacier and sea ice melting. When icebergs melt into the ocean, it “freshens” the saltwater around them, reducing its salinity. The oceans absorb excess anthropogenic carbon dioxide (CO2) causing decline in ocean pH, a process known as ocean acidification. Many marine organisms are specifically affected by ocean warming, freshening and acidification. Due to the sensitivity of Antarctica to global warming, using biomarkers is the best way for scientists to predict more accurately future climate change and provide useful information or ecological risk assessments. The 70-kilodalton (kDa) heat shock protein (HSP70) chaperones have been used as biomarkers of stress in temperate and tropical environments. The induction of the HSP70 genes (Hsp70) that alter intracellular proteins in living organisms is a signal triggered by environmental temperature changes. Induction of Hsp70 has been observed both in eukaryotes and in prokaryotes as response to environmental stressors including increased and decreased temperature, salinity, pH and the combined effects of changes in temperature, acidification and salinity stress. Generally, HSP70s play critical roles in numerous complex processes of metabolism; their synthesis can usually be increased or decreased during stressful conditions. However, there is a question as to whether HSP70s may serve as excellent biomarkers in the Antarctic considering the long residence time of Antarctic organisms in a cold polar environment which appears to have greatly modified the response of heat responding transcriptional systems. This review provides insight into the vital roles of HSP70 that make them ideal candidates as biomarkers for identifying resistance and resilience in response to abiotic stressors associated with climate change, which are the effects of ocean warming, freshening and acidification in Antarctic organisms.
Collapse
|
10
|
Martínez D, Moncada-Kopp C, Paschke K, Navarro JM, Vargas-Chacoff L. Warming and freshening activate the transcription of genes involved in the cellular stress response in Harpagifer antarcticus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:533-546. [PMID: 33523350 DOI: 10.1007/s10695-021-00931-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Thermal and saline variations of the Southern Ocean are important signs of climate change which can alter the physiological responses of stenotic species residing at high latitudes. Our study aimed to evaluate the cellular stress response (CSR) of Harpagifer antarcticus subjected to increased ambient temperature and decreased salinity. The fish were distributed in different thermal (2, 5, 8, 11, and 14 °C) and saline (23, 28, and 33 psu) combinations for 10 days. We used qPCR analysis to evaluate the transcription of genes involved in the thermal shock response (HSP70, HSC70, HSP90, and GRP78), ubiquitination (E2, E3, ubiquitin, and CHIP), 26S proteasome complex (PSMA2, PSMB7, and PSMC1), and apoptosis (SMAC/Diablo and BAX) in the liver and gill. The expression profiles were tissue-specific and mainly dependent on temperature rather than salinity in the gill; meanwhile, in the liver, both conditions modulated the expression of these genes. Transcription of markers involved in the heat shock response was much higher in the liver than in the gill and was higher when salinity decreased and the temperature increased. Similarly, the genes involved in the ubiquitination pathway, 26S complex of the proteasome, and the apoptotic pathway showed the same pattern, being mainly induced in the liver rather than in the gill. This is the first study to show that this Antarctic fish can induce the cellular stress response in their tissues when subjected to these thermal/saline combinations.
Collapse
Affiliation(s)
- Danixa Martínez
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile.
| | - Catalina Moncada-Kopp
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
- Centro FONDAP de Investigación de Altas Latitudes (FONDAP IDEAL), Universidad Austral de Chile, Valdivia, Chile
| | - Kurt Paschke
- Centro FONDAP de Investigación de Altas Latitudes (FONDAP IDEAL), Universidad Austral de Chile, Valdivia, Chile
- Instituto de Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile
| | - Jorge M Navarro
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
- Centro FONDAP de Investigación de Altas Latitudes (FONDAP IDEAL), Universidad Austral de Chile, Valdivia, Chile
| | - Luis Vargas-Chacoff
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile.
- Centro FONDAP de Investigación de Altas Latitudes (FONDAP IDEAL), Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
11
|
Martínez D, De Lázaro O, Cortés P, Oyarzún-Salazar R, Paschke K, Vargas-Chacoff L. Hypoxia modulates the transcriptional immunological response in Oncorhynchus kisutch. FISH & SHELLFISH IMMUNOLOGY 2020; 106:1042-1051. [PMID: 32950678 DOI: 10.1016/j.fsi.2020.09.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/17/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Oncorhynchus kisutch is the third most cultivated salmonid species in the Chilean salmon industry and its farming conditions are characterised by high stocking density leading to the generation of high levels of organic matter (food - feces) and decomposition. In addition to the increasingly frequent hypoxic oceanographic events, these inappropriate farming conditions increase the demand for oxygen within the fish farm pen and lead to the appearance of hypoxic events that are harmful to fish.This study aimed to evaluate the stress response (cortisol) and transcription of genes involved in the immune response in head kidney and spleen of Oncorhynchus kisutch subjected to chronic hypoxic stress conditions. The fish were exposed to 100%, 60%, 50%, 35%, and 25% of DO for 28 days, then the blood (plasma), head kidney and spleen were removed. We observed mortality in the 25% DO group at days 15 and 20. Plasma cortisol increased significantly under 35% and 25% DO conditions compared to control. Transcription of Toll-like receptors (TLR1, TLR5M, TLR8, and TLR9) and cytokines (IL-1β, IL6, IL10, TNF-α) increased in the head kidney only in the 50% DO group, while in spleen there was an increase of these markers in the conditions of 60%, 35%, and 25% DO. As for the markers involved in cell-mediated immunity, CD4-MHCII and CD8-MHCI do not have a clear expression pattern, although there was down-regulation in MHCII transcription in the head kidney, in all the hypoxia conditions evaluated. Finally, IgM transcription was increased in the spleen in all hypoxia conditions, although it wasn't always statistically significant compared to the control. These results indicate that chronic hypoxia induces the stress response, increasing plasma cortisol levels and modulating the transcription of genes involved in the innate and adaptive immune response. The expression patterns were tissue-specific, indicating that the degree of hypoxia differentially affects the transcription of genes involved in the immune response of Oncorhynchus kisutch.
Collapse
Affiliation(s)
- D Martínez
- Instituto de Ciencias Marinas y Limnológicas, Laboratorio de Fisiología de Peces, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL) Universidad Austral de Chile, casilla, 567, Valdivia, Chile.
| | - O De Lázaro
- Escuela de Graduados, Programa de Doctorado en Ciencias de la Acuicultura, Universidad Austral de Chile, Av. Los Pinos s/n Balneario Pelluco, Puerto Montt, Chile; Instituto de Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile
| | - P Cortés
- Escuela de Graduados, Programa de Magister en Nutrición Acuícola, Universidad Austral de Chile, Av. Los Pinos s/n Balneario Pelluco, Puerto Montt, Chile
| | - R Oyarzún-Salazar
- Instituto de Ciencias Marinas y Limnológicas, Laboratorio de Fisiología de Peces, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL) Universidad Austral de Chile, casilla, 567, Valdivia, Chile; Escuela de Graduados, Programa de Doctorado en Ciencias de la Acuicultura, Universidad Austral de Chile, Av. Los Pinos s/n Balneario Pelluco, Puerto Montt, Chile
| | - K Paschke
- Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL) Universidad Austral de Chile, casilla, 567, Valdivia, Chile; Instituto de Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile.
| | - L Vargas-Chacoff
- Instituto de Ciencias Marinas y Limnológicas, Laboratorio de Fisiología de Peces, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL) Universidad Austral de Chile, casilla, 567, Valdivia, Chile.
| |
Collapse
|