1
|
Xu Y, Xu X, Chai R, Wu X. Targeting ferroptosis to enhance the efficacy of mesenchymal stem cell-based treatments for intervertebral disc degeneration. Int J Biol Sci 2025; 21:1222-1241. [PMID: 39897051 PMCID: PMC11781166 DOI: 10.7150/ijbs.107021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/11/2025] [Indexed: 02/04/2025] Open
Abstract
Although mesenchymal stromal cell (MSC) implantation shows promise for repairing intervertebral disc (IVD) degeneration (IVDD), their limited retention within degenerative IVDs compromises therapeutic efficacy. The oxidative stress in the microenvironment of degenerated IVDs induces a surge in reactive oxygen species production within MSCs, disrupting the balance between oxidation and antioxidation, and ultimately inducing ferroptosis. Recent evidence has suggested that targeting ferroptosis in MSCs could enhance MSC retention, extend the survival of transplanted MSCs, and markedly delay the pathological progression of IVDD. By targeting ferroptosis, a novel approach emerges to boost the efficacy of MSC transplantation therapy for IVDD. In this review, current research on targeting ferroptosis in MSCs is discussed from various perspectives, including the targeting of specific genes and pathways, drug preconditioning, and hydrogel encapsulation. A detailed discussion on the effects of targeting ferroptosis in MSCs on the transplantation repair of degenerated IVDs is provided. Insights that could guide improvements in stem cell transplantation therapies are also offered. Significantly, this review presents specific ideas for our future foundational research. These insights outline promising avenues for future clinical translation and will contribute to developing and optimizing treatment strategies for MSC transplantation therapy, maximizing benefits for patients with lumbar IVDD.
Collapse
Affiliation(s)
- Yuzhu Xu
- Department of Spine Center, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Xuanfei Xu
- Department of Nuclear Medicine, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Renjie Chai
- Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Xiaotao Wu
- Department of Spine Center, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu, 210009, China
| |
Collapse
|
2
|
Gao K, Lv L, Li Z, Wang C, Zhang J, Qiu D, Xue H, Xu Z, Tan G. Natural Products in the Prevention of Degenerative Bone and Joint Diseases: Mechanisms Based on the Regulation of Ferroptosis. Phytother Res 2025; 39:162-188. [PMID: 39513459 DOI: 10.1002/ptr.8366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/09/2024] [Accepted: 09/19/2024] [Indexed: 11/15/2024]
Abstract
Degenerative bone and joint diseases (DBJDs), characterized by osteoporosis, osteoarthritis, and chronic inflammation of surrounding soft tissues, are systemic conditions primarily affecting the skeletal system. Ferroptosis, a programmed cell death pathway distinct from apoptosis, autophagy, and necroptosis. Accumulating evidence suggests that ferroptosis is intricately linked to the pathogenesis of DBJDs, and targeting its regulation could be beneficial in managing these conditions. Natural products, known for their anti-inflammatory and antioxidant properties, have shown unique advantages in preventing DBJDs, potentially through modulating ferroptosis. This article provides an overview of the latest research on ferroptosis, with a focus on its role in the pathogenesis of DBJDs and the therapeutic potential of natural products targeting this cell death pathway, offering novel insights for the prevention and treatment of DBJDs.
Collapse
Affiliation(s)
- Kuanhui Gao
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Longlong Lv
- Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Zhichao Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chenmoji Wang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiahao Zhang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Daodi Qiu
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haipeng Xue
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhanwang Xu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guoqing Tan
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
3
|
Ji X, Zhang J, Jin S, Teng H, Zhou Y, Li X, Choi SH, Li Q. Preclinical Safety Assessment of Deferoxamine-preconditioned Canine Adipose Tissue-derived Mesenchymal Stem Cells. In Vivo 2024; 38:2645-2655. [PMID: 39477396 PMCID: PMC11535940 DOI: 10.21873/invivo.13741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/27/2024] [Accepted: 08/16/2024] [Indexed: 11/07/2024]
Abstract
BACKGROUND/AIM In the pursuit of translating stem cell therapy technology into clinical practice, ensuring the safety and efficacy of treatments is paramount. Despite advancements, the effectiveness of stem cell applications often falls short of clinical requirements. This study aimed to address the challenge of limited efficacy by investigating the safety and effectiveness of canine adipose tissue-derived mesenchymal stem cells (cATMSCs) preconditioned with deferoxamine (DFO). MATERIALS AND METHODS Different concentrations of DFO were used to evaluate its impact on cATMSC activity. The therapeutic potential of these preconditioned cells was validated using a mouse model of systemic inflammation. Comprehensive evaluations, including clinical hematological and radiological assessments before and after intravenous injection of preconditioned cells were conducted. RESULTS The study showed a notable reduction in inflammatory markers and an overall decrease in the inflammatory response in the mouse model. The data collected from the clinical hematological and radiological assessments provided essential insights. CONCLUSION This study lays the groundwork for the future clinical deployment of DFO-preconditioned cATMSCs, demonstrating their potential to improve the efficacy and safety of stem cell therapies.
Collapse
Affiliation(s)
- Xinpeng Ji
- Department of Veterinary Medicine, Yanbian University, Yanji, P.R. China
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, P.R. China
| | - Junfang Zhang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, P.R. China
| | - Shiyu Jin
- Department of Veterinary Medicine, Yanbian University, Yanji, P.R. China
| | - Hailong Teng
- Department of Veterinary Medicine, Yanbian University, Yanji, P.R. China
| | - Yuze Zhou
- Department of Veterinary Medicine, Yanbian University, Yanji, P.R. China
| | - Xiangzi Li
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, P.R. China
| | - Seong-Ho Choi
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Qiang Li
- Department of Veterinary Medicine, Yanbian University, Yanji, P.R. China;
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, P.R. China
| |
Collapse
|
4
|
Wudhikulprapan W, Chattipakorn SC, Chattipakorn N, Kumfu S. Iron overload and programmed bone marrow cell death: Potential mechanistic insights. Arch Biochem Biophys 2024; 754:109954. [PMID: 38432564 DOI: 10.1016/j.abb.2024.109954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Iron overload has detrimental effects on bone marrow mesenchymal stem cells (BMMSCs), cells crucial for bone marrow homeostasis and hematopoiesis support. Excessive iron accumulation leads to the production of reactive oxygen species (ROS), resulting in cell death, cell cycle arrest, and disruption of vital cellular pathways. Although apoptosis has been extensively studied, other programmed cell death mechanisms including autophagy, necroptosis, and ferroptosis also play significant roles in iron overload-induced bone marrow cell death. Studies have highlighted the involvement of ROS production, DNA damage, MAPK pathways, and mitochondrial dysfunction in apoptosis. In addition, autophagy and ferroptosis are activated, as shown by the degradation of cellular components and lipid peroxidation, respectively. However, several compounds and antioxidants show promise in mitigating iron overload-induced cell death by modulating ROS levels, MAPK pathways, and mitochondrial integrity. Despite early indications, more comprehensive research and clinical studies are needed to better understand the interplay between these programmed cell death mechanisms and enable development of effective therapeutic strategies. This review article emphasizes the importance of studying multiple cell death pathways simultaneously and investigating potential rescuers to combat iron overload-induced bone marrow cell death.
Collapse
Affiliation(s)
- Wanat Wudhikulprapan
- Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sirinart Kumfu
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
5
|
Yasan GT, Gunel-Ozcan A. Hypoxia and Hypoxia Mimetic Agents As Potential Priming Approaches to Empower Mesenchymal Stem Cells. Curr Stem Cell Res Ther 2024; 19:33-54. [PMID: 36642875 DOI: 10.2174/1574888x18666230113143234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/12/2022] [Accepted: 11/04/2022] [Indexed: 01/17/2023]
Abstract
Mesenchymal stem cells (MSC) exhibit self-renewal capacity and multilineage differentiation potential, making them attractive for research and clinical application. The properties of MSC can vary depending on specific micro-environmental factors. MSC resides in specific niches with low oxygen concentrations, where oxygen functions as a metabolic substrate and a signaling molecule. Conventional physical incubators or chemically hypoxia mimetic agents are applied in cultures to mimic the original low oxygen tension settings where MSC originated. This review aims to focus on the current knowledge of the effects of various physical hypoxic conditions and widely used hypoxia-mimetic agents-PHD inhibitors on mesenchymal stem cells at a cellular and molecular level, including proliferation, stemness, differentiation, viability, apoptosis, senescence, migration, immunomodulation behaviors, as well as epigenetic changes.
Collapse
Affiliation(s)
| | - Aysen Gunel-Ozcan
- Department of Stem Cell Sciences, Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey
| |
Collapse
|
6
|
Zhu Y, Chang B, Pang Y, Wang H, Zhou Y. Advances in Hypoxia-Inducible Factor-1 α Stabilizer Deferoxamine in Tissue Engineering. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:347-357. [PMID: 36475887 DOI: 10.1089/ten.teb.2022.0168] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Deferoxamine (DFO) is an iron chelator with FDA approval for the clinical treatment of iron excess. As a well-established stabilizer of hypoxia-inducible factor-1α (HIF-1α), DFO can efficiently upregulate HIF-1α and relevant downstream angiogenic factors, leading to accelerated vascularization. Moreover, as increasing studies have focused on DFO as a hypoxia-mimetic agent in recent years, it has been shown that DFO exhibited multiple functions, including stem cell regulation, immunoregulation, provascularization, and pro-osteogenesis. On the contrary, DFO can bind excess iron ions in wounds of chronic inflammation, while serving as an antioxidant with the characteristic of removing reactive oxygen species. Collectively, these characteristics make DFO a potent modulator in tissue engineering for increasing tissue integration of biomaterials in vivo and facilitating wound healing. This review outlines the activity of DFO as a representative hypoxia-mimetic agent in cells as well as the evolution of its application in tissue engineering. It can be concluded that DFO is a medication with tremendous promise and application value in future trends, which can optimize biomaterials and existing tissue engineering techniques for tissue regeneration.
Collapse
Affiliation(s)
- Yanlin Zhu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, P.R. China
| | - Bei Chang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, P.R. China
| | - Yuxuan Pang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, P.R. China
| | - Huimin Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, P.R. China
| | - Yanmin Zhou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, P.R. China
| |
Collapse
|
7
|
Xiao J, Zhang G, Chen B, He Q, Mai J, Chen W, Pan Z, Yang J, Li J, Ma Y, Wang T, Wang H. Quercetin protects against iron overload-induced osteoporosis through activating the Nrf2/HO-1 pathway. Life Sci 2023; 322:121326. [PMID: 36639053 DOI: 10.1016/j.lfs.2022.121326] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023]
Abstract
AIMS Eucommia is the tree bark of Eucommia japonica, family Eucommiaceae. In traditional Chinese medicine, Eucommia is often used to treat osteoporosis. Quercetin (QUE), a major flavonoid extract of Eucommia japonica, has been reported to have anti-osteoporosis effects. However, there are no studies reporting the mechanism of QUE in the treatment of iron overload-induced osteoporosis. This study set out to investigate the therapeutic effects of QUE against iron overload-induced bone loss and its potential molecular mechanisms. MATERIALS AND METHODS In vitro, MC3T3-E1 cells were used to study the effects of QUE on osteogenic differentiation, anti-apoptosis and anti-oxidative stress damage in an iron overload environment (FAC 200 μM). In vivo, we constructed an iron overload mouse model by injecting iron dextrose intraperitoneally and assessed the osteoprotective effects of QUE by Micro-CT and histological analysis. KEY FINDINGS In vitro, we found that QUE increased the ALP activity of MC3T3-E1 cells in iron overload environment, promoted the formation of bone mineralized nodules and upregulated the expression of Runx2 and Osterix. In addition, QUE was able to reduce FAC-induced apoptosis and ROS production, down-regulated the expression of Caspase3 and Bax, and up-regulated the expression of Bcl-2. In further studies, we found that QUE activated the Nrf2/HO-1 signaling pathway and attenuated FAC-induced oxidative stress damage. The results of the in vivo study showed that QUE was able to reduce iron deposition induced by iron dextrose and attenuate bone loss. SIGNIFICANCE Our results suggested that QUE protects against iron overload-induced osteoporosis by activating the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Jiacong Xiao
- 1st School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Gangyu Zhang
- 1st School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, PR China; Department of Biomedicine, University of Basel, Basel, Switzerland.
| | - Bohao Chen
- 1st School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Qi He
- 1st School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Jiale Mai
- 1st School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Weijian Chen
- 1st School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Zhaofeng Pan
- 1st School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Junzheng Yang
- 1st School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Jianliang Li
- 1st School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Yanhuai Ma
- 1st School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Ting Wang
- 1st School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Haibin Wang
- Department of Orthopaedics, First Affiliated Hospital, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, PR China.
| |
Collapse
|
8
|
Li Z, Li D, Chen R, Gao S, Xu Z, Li N. Cell death regulation: A new way for natural products to treat osteoporosis. Pharmacol Res 2023; 187:106635. [PMID: 36581167 DOI: 10.1016/j.phrs.2022.106635] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/11/2022] [Accepted: 12/24/2022] [Indexed: 12/27/2022]
Abstract
Osteoporosis is a common metabolic bone disease that results from the imbalance of homeostasis within the bone. Intra-bone homeostasis is dependent on a precise dynamic balance between bone resorption by osteoclasts and bone formation by mesenchymal lineage osteoblasts, which comprises a series of complex and highly standardized steps. Programmed cell death (PCD) (e.g., apoptosis, autophagy, ferroptosis, pyroptosis, and necroptosis) is a cell death process that involves a cascade of gene expression events with tight structures. These events play a certain role in regulating bone metabolism by determining the fate of bone cells. Moreover, existing research has suggested that natural products derived from a wide variety of dietary components and medicinal plants modulate the PCDs based on different mechanisms, which show great potential for the prevention and treatment of osteoporosis, thus revealing the emergence of more acceptable complementary and alternative drugs with lower costs, fewer side effects and more long-term application. Accordingly, this review summarizes the common types of PCDs in the field of osteoporosis. Moreover, from the perspective of targeting PCDs, this review also discussed the roles of currently reported natural products in the treatment of osteoporosis and the involved mechanisms. Based on this, this review provides more insights into new molecular mechanisms of osteoporosis and provides a reference for developing more natural anti-osteoporosis drugs in the future.
Collapse
Affiliation(s)
- Zhichao Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Dandan Li
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050011, China
| | - Renchang Chen
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Shang Gao
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Zhanwang Xu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Nianhu Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| |
Collapse
|
9
|
Di Paola A, Palumbo G, Tortora C, Argenziano M, Catanoso M, Di Leva C, Ceglie G, Perrotta S, Locatelli F, Rossi F. Eltrombopag in paediatric immune thrombocytopenia: Iron metabolism modulation in mesenchymal stromal cells. Br J Haematol 2021; 197:110-119. [PMID: 34961933 PMCID: PMC9303225 DOI: 10.1111/bjh.18012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 01/13/2023]
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disease caused by platelet destruction mediated by auto-antibody production. It is characterized by a compromised immune system and alteration of the inflammatory response. Mesenchymal stromal cells (MSCs) play an important role in modulating immune and inflammatory processes, exerting immune-suppressing and anti-inflammatory properties. In ITP-MSCs the activity and survival are strongly impaired. Eltrombopag (ELT) is a thrombopoietin receptor agonist approved in chronic ITP for stimulating platelet production. It has immunomodulating properties by stimulating T and B regulatory cell activity and by promoting a macrophage switch from the pro-inflammatory to the anti-inflammatory phenotype. ELT also exhibits iron-chelating properties. Iron is a crucial element involved in several physiologic processes, but its intracellular accumulation determines cell damages. Therefore, for the first time we analysed the effect of ELT on ITP-MSCs demonstrating its ability to restore survival and activity of MSCs directly and to promote their survival and proliferation indirectly, by iron metabolism modulation.
Collapse
Affiliation(s)
- Alessandra Di Paola
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | - Chiara Tortora
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maura Argenziano
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | - Caterina Di Leva
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giulia Ceglie
- Department of Haematology, Bambino Gesù Hospital, Rome, Italy
| | - Silverio Perrotta
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | - Francesca Rossi
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
10
|
Szymonik J, Wala K, Górnicki T, Saczko J, Pencakowski B, Kulbacka J. The Impact of Iron Chelators on the Biology of Cancer Stem Cells. Int J Mol Sci 2021; 23:ijms23010089. [PMID: 35008527 PMCID: PMC8745085 DOI: 10.3390/ijms23010089] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 02/06/2023] Open
Abstract
Neoplastic diseases are still a major medical challenge, requiring a constant search for new therapeutic options. A serious problem of many cancers is resistance to anticancer drugs and disease progression in metastases or local recurrence. These characteristics of cancer cells may be related to the specific properties of cancer stem cells (CSC). CSCs are involved in inhibiting cells’ maturation, which is essential for maintaining their self-renewal capacity and pluripotency. They show increased expression of transcription factor proteins, which were defined as stemness-related markers. This group of proteins includes OCT4, SOX2, KLF4, Nanog, and SALL4. It has been noticed that the metabolism of cancer cells is changed, and the demand for iron is significantly increased. Iron chelators have been proven to have antitumor activity and influence the expression of stemness-related markers, thus reducing chemoresistance and the risk of tumor cell progression. This prompts further investigation of these agents as promising anticancer novel drugs. The article presents the characteristics of stemness markers and their influence on the development and course of neoplastic disease. Available iron chelators were also described, and their effects on cancer cells and expression of stemness-related markers were analyzed.
Collapse
Affiliation(s)
- Julia Szymonik
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (J.S.); (K.W.); (T.G.)
| | - Kamila Wala
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (J.S.); (K.W.); (T.G.)
| | - Tomasz Górnicki
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (J.S.); (K.W.); (T.G.)
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Bartosz Pencakowski
- Department of Pharmaceutical Biology and Botany, Faculty of Pharmacy, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland;
- Correspondence: ; Tel.: +48-71-784-06-88
| |
Collapse
|
11
|
Soleimani Asl S, Gharebaghi A, Shahidi S, Afshar S, Kalhori F, Amiri K, Mirzaei F. Deferoxamine preconditioning enhances the protective effects of stem cells in streptozotocin-induced Alzheimer's disease. Life Sci 2021; 287:120093. [PMID: 34715140 DOI: 10.1016/j.lfs.2021.120093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 10/20/2022]
Abstract
AIMS Stem cell-based therapy is one of the promising strategies in the treatment of Alzheimer's disease (AD), but the short lifespan and low homing of transplanted cells continue to be a major obstacle in this method. Preconditioning of stem cells before transplantation could increase cell therapy efficiency. Herein, we examined whether the treatment of stem cells with deferoxamine (DEF) prior to graft could enhance the neuroprotective effects of stem cells in the streptozotocin (STZ)-treated male rats. MATERIALS AND METHODS After induction of the AD model, the rats were transplanted with DEF-preconditioned Adipose-derived mesenchymal stem cells (AMSCs) or untreated cells. Memory function, antioxidant capacity, cell density, and homing of transplanted cells were assessed using Morris water maze and shuttle box tasks as well as biochemical and histochemical methods. KEY FINDINGS Transplantation of AMSCs caused a memory improvement when compared to the AD model. The injection of DEF-preconditioned AMSCs was more effective in improving learning and memory than the untreated cells through an increase in the antioxidant capacity. Moreover, the homing of transplanted cells was higher in the rats that received the preconditioned cells than that of the naïve cell-injected group. SIGNIFICANCE It seems that the transplantation of DEF-treated cells may increase the efficiency of stem cells via an increase in the antioxidant capacity.
Collapse
Affiliation(s)
- Sara Soleimani Asl
- Department of Anatomy, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Endometrium and Endometriosis Research Centre, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Alireza Gharebaghi
- School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Siamak Shahidi
- Neurophysiology Research Centre, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Simin Afshar
- Neurophysiology Research Centre, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fereshte Kalhori
- Department of Anatomy, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Kimia Amiri
- School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Mirzaei
- Department of Anatomy, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
12
|
Shatrova AN, Burova EB, Kharchenko MV, Smirnova IS, Lyublinskaya OG, Nikolsky NN, Borodkina AV. Outcomes of Deferoxamine Action on H 2O 2-Induced Growth Inhibition and Senescence Progression of Human Endometrial Stem Cells. Int J Mol Sci 2021; 22:6035. [PMID: 34204881 PMCID: PMC8199751 DOI: 10.3390/ijms22116035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/24/2021] [Accepted: 06/01/2021] [Indexed: 12/27/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are broadly applied in regenerative therapy to replace cells that are lost or impaired during disease. The low survival rate of MSCs after transplantation is one of the major limitations heavily influencing the success of the therapy. Unfavorable microenvironments with inflammation and oxidative stress in the damaged regions contribute to MSCs loss. Most of the strategies developed to overcome this obstacle are aimed to prevent stress-induced apoptosis, with little attention paid to senescence-another common stress reaction of MSCs. Here, we proposed the strategy to prevent oxidative stress-induced senescence of human endometrial stem cells (hMESCs) based on deferoxamine (DFO) application. DFO prevented DNA damage and stress-induced senescence of hMESCs, as evidenced by reduced levels of reactive oxygen species, lipofuscin, cyclin D1, decreased SA-β-Gal activity, and improved mitochondrial function. Additionally, DFO caused accumulation of HIF-1α, which may contribute to the survival of H2O2-treated cells. Importantly, cells that escaped senescence due to DFO preconditioning preserved all the properties of the initial hMESCs. Therefore, once protecting cells from oxidative damage, DFO did not alter further hMESCs functioning. The data obtained may become the important prerequisite for development of a new strategy in regenerative therapy based on MSCs preconditioning using DFO.
Collapse
Affiliation(s)
- Alla N. Shatrova
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia; (E.B.B.); (M.V.K.); (I.S.S.); (O.G.L.); (N.N.N.); (A.V.B.)
| | | | | | | | | | | | | |
Collapse
|
13
|
Deferoxamine B: A Natural, Excellent and Versatile Metal Chelator. Molecules 2021; 26:molecules26113255. [PMID: 34071479 PMCID: PMC8198152 DOI: 10.3390/molecules26113255] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
Deferoxamine B is an outstanding molecule which has been widely studied in the past decade for its ability to bind iron and many other metal ions. The versatility of this metal chelator makes it suitable for a number of medicinal and analytical applications, from the well-known iron chelation therapy to the most recent use in sensor devices. The three bidentate hydroxamic functional groups of deferoxamine B are the centerpiece of its metal binding ability, which allows the formation of stable complexes with many transition, lanthanoid and actinoid metal ions. In addition to the ferric ion, in fact, more than 20 different metal complexes of deferoxamine b have been characterized in terms of their chemical speciation in solution. In addition, the availability of a terminal amino group, most often not involved in complexation, opens the way to deferoxamine B modification and functionalization. This review aims to collect and summarize the available data concerning the complex-formation equilibria in solutions of deferoxamine B with different metal ions. A general overview of the progress of its applications over the past decade is also discussed, including the treatment of iron overload-associated diseases, its clinical use against cancer and neurodegenerative disorders and its role as a diagnostic tool.
Collapse
|
14
|
Solouki N, Mohammadi-Gollou A, Sagha M, Mohammadzadeh-Vardin M. Origanum vulgare extract induces apoptosis in Molt-4 leukemic cell line. JOURNAL OF CELLULAR BIOTECHNOLOGY 2021; 6:105-112. [DOI: 10.3233/jcb-200026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
OBJECTIVE: The purpose of this paper is to investigate the effect of Origanum vulgare extract as a plant with high anti-oxidant components on the induction of cell death in the Molt-4 cell line. BACKGROUND: Acute lymphocytic leukemia is characterized by the accumulation of a large number of lymphoblastic cells with high oxidant levels. METHODS: MTT assay was performed to determine the effect of O.vulgare extract on Molt-4 cells viability and the amount of 50% inhibitory concentration (IC50) was calculated. Changes in the expression of BAX and BCL-2 genes as involved in apoptosis and Nrf2 gene as a transcription factor of anti-oxidant genes in O.vulgare extract-treated Molt-4 cells were measured with Real-Time PCR. Treated Molt-4 cells were used to determine the stages of early and late apoptosis, and necrosis using acridine orange/ethidium bromide double staining. RESULTS: The results suggest survival inhibition and induction of apoptosis in Molt-4 cells treated with O.vulgare extract. Against Bax and Nrf2 genes expression, the expression of Bcl-2 gene has been reduced in Molt-4 cells following1/5 IC50 concentration of O. vulgare extract treatment. CONCLUSION: Given the oxidant drugs used in ALL treatment, and increased levels of oxidative stress in leukemic cells, induction of apoptosis by an anti-oxidant plant extract seems to be a promising way in leukemia treatment.
Collapse
Affiliation(s)
- Nona Solouki
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ali Mohammadi-Gollou
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohsen Sagha
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Mohammadzadeh-Vardin
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
15
|
Tae JY, Lee H, Lee H, Song Y, Park JB. Morphological stability, cellular viability and stem cell marker expression of three-dimensional cultures of stem cells from bone marrow and periodontium. Biomed Rep 2020; 14:9. [PMID: 33235724 PMCID: PMC7678627 DOI: 10.3892/br.2020.1385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 10/19/2020] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to evaluate the morphology, cellular viability and stem cell marker expression of three-dimensional cultures of bone marrow and gingiva-derived stem cells in different ratios. Stem cell spheroids were made with bone marrow and gingiva-derived stem cells using ratios of 6:0 (Group 1), 4:2 (Group 2), 3:3 (Group 3), 2:4 (Group 4) and 0:6 (Group 5), respectively. The viability of cell spheroids was analyzed using a Live/Dead kit assay and a Cell Counting Kit-8 assay. Total RNA extraction and reverse transcription-quantitative PCR were performed to detect the mRNA expression levels of Nanog and β-actin in each group. Stem cell spheroids were well formed in silicone elastomer-based concave microwells with different ratios of bone marrow and gingiva-derived stem cells. The shape of the spheroids and their viability were maintained throughout the entirety of the experimental procedure. Statistically significant increases in spheroid diameters were noted in Groups 4 and 5 on day 1 when compared with Group 1 on day 1. There was a significant increase in the cell viability values seen in Group 3 on day 1 when compared with Group 1 on day 1. Highest levels of Nanog expression was seen in Group 3 on day 10, but the increase was not significant when compared with Group 1 on day 1. Co-culturing with higher ratios of gingiva-derived stem cells produced stem cell spheroids with larger diameters and increased cellular viability. This co-culture technique may be used in stem cell therapy with allogenic stem cell transplantation.
Collapse
Affiliation(s)
- Jae-Yong Tae
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hyunjin Lee
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hyuna Lee
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Youngmin Song
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jun-Beom Park
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|