1
|
Ibrahim P, Denniston R, Mitsuhashi H, Yang J, Fiori LM, Żurawek D, Mechawar N, Nagy C, Turecki G. Profiling Small RNA From Brain Extracellular Vesicles in Individuals With Depression. Int J Neuropsychopharmacol 2024; 27:pyae013. [PMID: 38457375 PMCID: PMC10946232 DOI: 10.1093/ijnp/pyae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/07/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is a leading cause of disability with significant mortality risk. Despite progress in our understanding of the etiology of MDD, the underlying molecular changes in the brain remain poorly understood. Extracellular vesicles (EVs) are lipid-bound particles that can reflect the molecular signatures of the tissue of origin. We aimed to optimize a streamlined EV isolation protocol from postmortem brain tissue and determine whether EV RNA cargo, particularly microRNAs (miRNAs), have an MDD-specific profile. METHODS EVs were isolated from postmortem human brain tissue. Quality was assessed using western blots, transmission electron microscopy, and microfluidic resistive pulse sensing. EV RNA was extracted and sequenced on Illumina platforms. Functional follow-up was performed in silico. RESULTS Quality assessment showed an enrichment of EV markers, as well as a size distribution of 30 to 200 nm in diameter, and no contamination with cellular debris. Small RNA profiling indicated the presence of several RNA biotypes, with miRNAs and transfer RNAs being the most prominent. Exploring miRNA levels between groups revealed decreased expression of miR-92a-3p and miR-129-5p, which was validated by qPCR and was specific to EVs and not seen in bulk tissue. Finally, in silico functional analyses indicate potential roles for these 2 miRNAs in neurotransmission and synaptic plasticity. CONCLUSION We provide a streamlined isolation protocol that yields EVs of high quality that are suitable for molecular follow-up. Our findings warrant future investigations into brain EV miRNA dysregulation in MDD.
Collapse
Affiliation(s)
- Pascal Ibrahim
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, Quebec, Canada
| | - Ryan Denniston
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, Quebec, Canada
| | - Haruka Mitsuhashi
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, Quebec, Canada
| | - Jennie Yang
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, Quebec, Canada
| | - Laura M Fiori
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, Quebec, Canada
| | - Dariusz Żurawek
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, Quebec, Canada
| | - Naguib Mechawar
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Corina Nagy
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Gustavo Turecki
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Santarpia M, Ciappina G, Spagnolo CC, Squeri A, Passalacqua MI, Aguilar A, Gonzalez-Cao M, Giovannetti E, Silvestris N, Rosell R. Targeted therapies for KRAS-mutant non-small cell lung cancer: from preclinical studies to clinical development-a narrative review. Transl Lung Cancer Res 2023; 12:346-368. [PMID: 36895930 PMCID: PMC9989806 DOI: 10.21037/tlcr-22-639] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023]
Abstract
Background and Objective Non-small cell lung cancer (NSCLC) with Kirsten rat sarcoma viral oncogene homolog (KRAS) driver alterations harbors a poor prognosis with standard therapies, including chemotherapy and/or immunotherapy with anti-programmed cell death protein 1 (anti-PD-1) or anti-programmed death ligand-1 (anti-PD-L1) antibodies. Selective KRAS G12C inhibitors have been shown to provide significant clinical benefit in pretreated NSCLC patients with KRAS G12C mutation. Methods In this review, we describe KRAS and the biology of KRAS-mutant tumors and review data from preclinical studies and clinical trials on KRAS-targeted therapies in NSCLC patients with KRAS G12C mutation. Key Content and Findings KRAS is the most frequently mutated oncogene in human cancer. The G12C is the most common KRAS mutation found in NSCLC. Sotorasib is the first, selective KRAS G12C inhibitor to receive approval based on demonstration of significant clinical benefit and tolerable safety profile in previously treated, KRAS G12C-mutated NSCLC. Adagrasib, a highly selective covalent inhibitor of KRAS G12C, has also shown efficacy in pretreated patients and other novel KRAS inhibitors are being under evaluation in early-phase studies. Similarly to other oncogene-directed therapies, mechanisms of intrinsic and acquired resistance limiting the activity of these agents have been described. Conclusions The discovery of selective KRAS G12C inhibitors has changed the therapeutic scenario of KRAS G12C-mutant NSCLC. Various studies testing KRAS inhibitors in different settings of disease, as single-agent or in combination with targeted agents for synthetic lethality and immunotherapy, are currently ongoing in this molecularly-defined subgroup of patients to further improve clinical outcomes.
Collapse
Affiliation(s)
- Mariacarmela Santarpia
- Department of Human Pathology "G. Barresi", Medical Oncology Unit, University of Messina, Messina, Italy
| | - Giuliana Ciappina
- Department of Human Pathology "G. Barresi", Medical Oncology Unit, University of Messina, Messina, Italy
| | - Calogera Claudia Spagnolo
- Department of Human Pathology "G. Barresi", Medical Oncology Unit, University of Messina, Messina, Italy
| | - Andrea Squeri
- Department of Human Pathology "G. Barresi", Medical Oncology Unit, University of Messina, Messina, Italy
| | - Maria Ilenia Passalacqua
- Department of Human Pathology "G. Barresi", Medical Oncology Unit, University of Messina, Messina, Italy
| | - Andrés Aguilar
- Oncology Institute Dr. Rosell, IOR, Dexeus University Hospital, Barcelona, Spain
| | - Maria Gonzalez-Cao
- Oncology Institute Dr. Rosell, IOR, Dexeus University Hospital, Barcelona, Spain
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands.,Cancer Pharmacology Lab, Fondazione Pisana per La Scienza, San Giuliano, Italy
| | - Nicola Silvestris
- Department of Human Pathology "G. Barresi", Medical Oncology Unit, University of Messina, Messina, Italy
| | - Rafael Rosell
- Oncology Institute Dr. Rosell, IOR, Dexeus University Hospital, Barcelona, Spain.,Catalan Institute of Oncology, ICO, Badalona, Spain
| |
Collapse
|
3
|
Chukka PAR, Wetmore SD, Thakor N. Established and Emerging Regulatory Roles of Eukaryotic Translation Initiation Factor 5B (eIF5B). Front Genet 2021; 12:737433. [PMID: 34512736 PMCID: PMC8430213 DOI: 10.3389/fgene.2021.737433] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/10/2021] [Indexed: 12/21/2022] Open
Abstract
Translational control (TC) is one the crucial steps that dictate gene expression and alter the outcome of physiological process like programmed cell death, metabolism, and proliferation in a eukaryotic cell. TC occurs mainly at the translation initiation stage. The initiation factor eIF5B tightly regulates global translation initiation and facilitates the expression of a subset of proteins involved in proliferation, inhibition of apoptosis, and immunosuppression under stress conditions. eIF5B enhances the expression of these survival proteins to allow cancer cells to metastasize and resist chemotherapy. Using eIF5B as a biomarker or drug target could help with diagnosis and improved prognosis, respectively. To achieve these goals, it is crucial to understand the role of eIF5B in translational regulation. This review recapitulates eIF5B's regulatory roles in the translation initiation of viral mRNA as well as the cellular mRNAs in cancer and stressed eukaryotic cells.
Collapse
Affiliation(s)
- Prakash Amruth Raj Chukka
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada.,Southern Alberta Genome Sciences Centre (SAGSC), University of Lethbridge, Lethbridge, AB, Canada.,Alberta RNA Research and Training Institute (ARRTI), University of Lethbridge, Lethbridge, AB, Canada.,Canadian Centre of Research in Advanced Fluorine Technologies (C-CRAFT), University of Lethbridge, Lethbridge, AB, Canada
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada.,Southern Alberta Genome Sciences Centre (SAGSC), University of Lethbridge, Lethbridge, AB, Canada.,Alberta RNA Research and Training Institute (ARRTI), University of Lethbridge, Lethbridge, AB, Canada.,Canadian Centre of Research in Advanced Fluorine Technologies (C-CRAFT), University of Lethbridge, Lethbridge, AB, Canada
| | - Nehal Thakor
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada.,Southern Alberta Genome Sciences Centre (SAGSC), University of Lethbridge, Lethbridge, AB, Canada.,Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada.,Department of Neuroscience, Canadian Centre for Behavioral Neuroscience (CCBN), University of Lethbridge, Lethbridge, AB, Canada.,Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|