1
|
Salehi A, Bahrami Z, Shahsavani MB, Somee LR, Stroylova YY, Zarei I, Amanlou M, Hemmati M, Muronetz VI, Saboury AA, Moosavi-Movahedi AA, Yousefi R. Structural characterization and functional analysis of human αB-crystallin with the p.R11G mutation: Insights into cataractogenesis and cardiomyopathy. Int J Biol Macromol 2025; 307:141895. [PMID: 40086543 DOI: 10.1016/j.ijbiomac.2025.141895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/02/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
αB-crystallin, a member of the small heat-shock protein family, functions as a molecular chaperone and plays a critical role in maintaining cellular homeostasis by preventing the aggregation of misfolded proteins in various tissues. This research investigates the structural and functional consequences of the p.R11G mutation in human αB-crystallin, which is associated with serious health issues, including cataracts, myofibrillar myopathy, and dilated cardiomyopathy. Following the introduction of this mutation through site-directed mutagenesis, the mutant protein was expressed in a prokaryotic host system and purified using ion-exchange chromatography. The structure and stability of the mutant protein were assessed using various spectroscopic techniques. Moreover, the oligomeric structure of the mutant protein was examined using dynamic light scattering and atomic force microscopy. To evaluate the chaperone activity and cytoprotective effects of the protein, UV-Vis spectroscopy and the 2,5-diphenyl-2H-tetrazolium bromide (MTT) assay were utilized. The results demonstrated that the p.R11G mutation significantly alters the protein's structure, leading to enhanced thermal and chemical stability, and formation of the larger oligomers compared to the wild-type protein. Additionally, the mutation was found to increase the protein's chaperone activity and its capacity to inhibit cancer cell death under oxidative stress conditions. Based on the results of our study, the significant changes observed in the structure and activity of human αB-crystallin due to this mutation elucidate the potential role of the mutated chaperone in cataract formation and myopathy. Further research is necessary to fully elucidate the underlying mechanisms and translate these findings into effective therapeutic interventions.
Collapse
Affiliation(s)
- Atefeh Salehi
- Protein Chemistry Laboratory (PCL), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Zahra Bahrami
- Protein Chemistry Laboratory (PCL), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | | | - Leila Rezaei Somee
- Protein Chemistry Laboratory (PCL), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Yulia Y Stroylova
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld 40, 119991 Moscow, Russia
| | - Issa Zarei
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Massoud Amanlou
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Hemmati
- Protein Chemistry Laboratory (PCL), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Vladimir I Muronetz
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld 40, 119991 Moscow, Russia
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | | | - Reza Yousefi
- Protein Chemistry Laboratory (PCL), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| |
Collapse
|
2
|
Jayakumar MN, Muhammad JS, Dutta M, Donakonda S. Comprehensive In silico analysis of chaperones identifies CRYAB and P4HA2 as potential therapeutic targets and their small-molecule inhibitors for the treatment of cholangiocarcinoma. Comput Biol Med 2023; 166:107572. [PMID: 37844407 DOI: 10.1016/j.compbiomed.2023.107572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/29/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023]
Abstract
Cholangiocarcinoma (CCA) is a subtype of liver cancer with increasing incidence, poor prognosis, and limited treatment modalities. It is, therefore, imperative to identify novel therapeutic targets for better management of the disease. Chaperones are known to be significant regulators of carcinogenesis, however, their role in CCA remains unclear. This study aims to screen chaperones involved in CCA pathogenesis and identify drugs targeting key chaperones to improve the therapeutic response to the disease. To achieve this, first we mined the literature to create an atlas of human chaperone proteins. Next, their expression in CCA was determined by publicly available datasets of patients at mRNA and protein levels. In addition, our analysis involving protein-protein interaction and pathway analysis of eight key dysregulated chaperones revealed that they control crucial cancer-related pathways. Furthermore, topology analysis of the CCA network identified crystallin alpha-B protein (CRYAB) and prolyl-4-hydroxylase subunit 2 (P4HA2) as novel therapeutic targets for the disease. Finally, drug repurposing of 286 clinically approved anti-cancer drugs against these two chaperones performed by molecular docking and molecular dynamics simulations showed that tucatinib and regorafenib had a modulatory effect on them and could be potential inhibitors of CRYAB and P4HA2, respectively. Overall, our study, for the first time, provides insights into the pan-chaperone expression in CCA and explains the pathways that might drive CCA pathogenesis. Further, our identification of potential therapeutic targets and their inhibitors could provide new and complementary approaches to CCA treatment.
Collapse
Affiliation(s)
- Manju Nidagodu Jayakumar
- Department of Biotechnology, Birla Institute of Technology and Science (BITS) Pilani Dubai Campus, Academic City, Dubai, 345055, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Jibran Sualeh Muhammad
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates; Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates.
| | - Mainak Dutta
- Department of Biotechnology, Birla Institute of Technology and Science (BITS) Pilani Dubai Campus, Academic City, Dubai, 345055, United Arab Emirates.
| | - Sainitin Donakonda
- Institute of Molecular Immunology and Experimental Oncology, Klinikum rechts der Isar, Technical University Munich, 81675, Germany.
| |
Collapse
|
3
|
Cheng L, Zou X, Wang J, Zhang J, Mo Z, Huang H. The role of CRYAB in tumor prognosis and immune infiltration: A Pan-cancer analysis. Front Surg 2023; 9:1117307. [PMID: 36713654 PMCID: PMC9880180 DOI: 10.3389/fsurg.2022.1117307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/29/2022] [Indexed: 01/14/2023] Open
Abstract
Purpose There is evidence that the Crystallin Alpha B (CRYAB) gene is involved in the regulation of the tumor microenvironment and influences tumor prognosis in some cancers. However, the role of CRYAB gene in prognosis and immunology in pan-cancer is still unclear. Methods In this study, we analyzed the transcriptional profiles and survival data of cancer patients from The Cancer Genome Atlas (TCGA) database. CRYAB gene and its relationships with pan-cancer were analyzed using R packages, TIMER2.0, GEPIA2, Sangerbox, UALCAN, cBioPortal, ESTIMATE algorithm, and STRING. Besides, real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) was utilized to detect CRYAB expression in KIRC and a human KIRC cell line (Caki-1). Results We found that CRYAB expression was different in tumors and adjacent tumors in human cancers, affecting patients' prognosis in 15 cancer types. Additionally, CRYAB expression significantly correlated with tumor microenvironment (TME), immune checkpoints (ICP), tumor mutational burden (TMB), and microsatellite instability (MSI) in human cancers. Besides, CRYAB expression was positively associated with the immune infiltration of cancer-associated fibroblasts (CAFs) and endothelial cells in most human cancers. Based on enrichment analysis, the most prevalent CRYAB gene mechanism in malignant tumors may be through anti-apoptotic activity. Moreover, some FDA-approved drugs were found to be associated with CRYAB and might be potential cancer therapeutic candidates. Conclusions CRYAB is a crucial component of the TME and influences immune cell infiltration, making it a promising biomarker to assess immune infiltration and prognosis in many malignancies.
Collapse
Affiliation(s)
- Lang Cheng
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China,Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China,Department of Urology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| | - Xiong Zou
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China,Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiawei Wang
- Department of Urology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| | - Jiange Zhang
- Department of Urology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zengnan Mo
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China,Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China,Correspondence: Zengnan Mo Houbao Huang
| | - Houbao Huang
- Department of Urology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China,Correspondence: Zengnan Mo Houbao Huang
| |
Collapse
|
4
|
Rashidieh B, Bain AL, Tria SM, Sharma S, Stewart CA, Simmons JL, Apaja PM, Duijf PHG, Finnie J, Khanna KK. Alpha-B-Crystallin overexpression is sufficient to promote tumorigenesis and metastasis in mice. Exp Hematol Oncol 2023; 12:4. [PMID: 36624493 PMCID: PMC9830749 DOI: 10.1186/s40164-022-00365-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND αB-Crystallin is a heat shock chaperone protein which binds to misfolded proteins to prevent their aggregation. It is overexpressed in a wide-variety of cancers. Previous studies using human cancer cell lines and human xenograft models have suggested potential tumor promoter (oncogene) roles for αB-Crystallin in a wide-spectrum of cancers. METHODS To determine the causal relationship between CRYAB overexpression and cancer, we generated a Cryab overexpression knock-in mouse model and monitor them for development of spontaneous and carcinogen (DMBA)-induced tumorigenesis. In order to investigate the mechanism of malignancies observed in this model multiple techniques were used such as immunohistochemical characterizations of tumors, bioinformatics analysis of publically available human tumor datasets, and generation of mouse embryonic fibroblasts (MEFs) for in vitro assays (clonogenic survival and migration assays and proteome analysis by mass-spectrometry). RESULTS This model revealed that constitutive overexpression of Cryab results in the formation of a variety of lethal spontaneous primary and metastatic tumors in mice. In vivo, the overexpression of Cryab correlated with the upregulation of epithelial-to-mesenchymal (EMT) markers, angiogenesis and some oncogenic proteins including Basigin. In vitro, using E1A/Ras transformed MEFs, we observed that the overexpression of Cryab led to the promotion of cell survival via upregulation of Akt signaling and downregulation of pro-apoptotic pathway mediator JNK, with subsequent attenuation of apoptosis as assessed by cleaved caspase-3 and Annexin V staining. CONCLUSIONS Overall, through the generation and characterization of Cryab overexpression model, we provide evidence supporting the role of αB-Crystallin as an oncogene, where its upregulation is sufficient to induce tumors, promote cell survival and inhibit apoptosis.
Collapse
Affiliation(s)
- Behnam Rashidieh
- grid.1049.c0000 0001 2294 1395QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD 4006 Australia ,grid.1003.20000 0000 9320 7537School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD 4006 Australia
| | - Amanda Louise Bain
- grid.1049.c0000 0001 2294 1395QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD 4006 Australia
| | - Simon Manuel Tria
- grid.1049.c0000 0001 2294 1395QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD 4006 Australia ,grid.1022.10000 0004 0437 5432School of Environment and Science, Griffith University, 170 Kessels Road, Nathan, Brisbane, QLD 4111 Australia
| | - Sowmya Sharma
- grid.1049.c0000 0001 2294 1395QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD 4006 Australia
| | - Cameron Allan Stewart
- grid.1049.c0000 0001 2294 1395QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD 4006 Australia ,grid.1022.10000 0004 0437 5432School of Environment and Science, Griffith University, 170 Kessels Road, Nathan, Brisbane, QLD 4111 Australia
| | - Jacinta Ley Simmons
- grid.1049.c0000 0001 2294 1395QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD 4006 Australia
| | - Pirjo M. Apaja
- grid.430453.50000 0004 0565 2606South Australian Health and Medical Research Institute, Lifelong Health, Organelle Proteostasis Diseases, Adelaide, SA 5000 Australia ,grid.1010.00000 0004 1936 7304Department of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, SA 5000 Australia ,grid.1014.40000 0004 0367 2697College of Public Health and Medicine, Flinders University, Bedford Park, SA 5042 Australia
| | - Pascal H. G. Duijf
- grid.1024.70000000089150953School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD 4000 Australia ,grid.1024.70000000089150953Centre for Data Science, Queensland University of Technology (QUT), Brisbane, QLD 4000 Australia ,grid.1024.70000000089150953Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD 4000 Australia ,grid.1024.70000000089150953Cancer and Aging Research Program, Queensland University of Technology, Brisbane, QLD 4000 Australia ,grid.5510.10000 0004 1936 8921Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway ,grid.55325.340000 0004 0389 8485Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway
| | - John Finnie
- grid.1010.00000 0004 1936 7304Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, SA 5000 Australia
| | - Kum Kum Khanna
- grid.1049.c0000 0001 2294 1395QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD 4006 Australia
| |
Collapse
|
5
|
Heat shock proteins in adaptation to physical activity. UKRAINIAN BIOCHEMICAL JOURNAL 2022. [DOI: 10.15407/ubj94.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The review article presents the author’s model of one of the blocks of the integrated adaptation mechanism to physical activity and the accompanying moderate heat effects. The participation of heat shock proteins in the stabilization of the tertiary structure and in the restoration of the function of proteins damaged by temperature and physical stressors but performing catalytic, transport, reception or protective role and being involved in the processes of contraction- relaxation and muscle and bone tissue remodeling is discussed.
Collapse
|
6
|
Ding JH, Xiao Y, Zhao S, Xu Y, Xiao YL, Shao ZM, Jiang YZ, Di GH. Integrated analysis reveals the molecular features of fibrosis in triple-negative breast cancer. Mol Ther Oncolytics 2022; 24:624-635. [PMID: 35284626 PMCID: PMC8898759 DOI: 10.1016/j.omto.2022.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/03/2022] [Indexed: 02/07/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive type of breast cancer. High fibrosis, marked by increased collagen fibers, is widespread in TNBC and correlated with tumor progression. However, the molecular features of fibrosis and why it results in a poor prognosis remain poorly understood. Based on multiomics datasets of TNBC, we evaluated the pathological fibrosis grade of 344 samples for further analysis. Genomic, transcriptomic, and immune changes were analyzed among different subgroups of fibrosis. High fibrosis was an independent adverse prognosis predictor and had interactions with low stromal tumor-infiltrating lymphocytes. Genomic analysis identified copy number gains of 6p22.2-6p22.1 (TRIM27) and 20q13.33 (CDH4) as genomic hallmarks of tumors with high fibrosis. Transcriptome analysis revealed the transforming growth factor-beta pathway and hypoxia pathway were key pro-oncogenic pathways in tumors with high fibrosis. Moreover, we systematically evaluate the relationship between fibrosis and different kinds of immune and stromal cells. Tumors with high fibrosis were characterized by an immunosuppressive tumor microenvironment with limited immune cell infiltration and increased fibroblasts. This study proposes new insight into the genomic and transcriptomic alterations potentially driving fibrosis. Moreover, fibrosis is related to an immunosuppressive tumor microenvironment that contributes to the poor prognosis.
Collapse
Affiliation(s)
- Jia-Han Ding
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Yi Xiao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Shen Zhao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Ying Xu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Yu-Ling Xiao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
- Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Yi-Zhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Gen-Hong Di
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
7
|
Ljungblad L, Bergqvist F, Tümmler C, Madawala S, Olsen TK, Andonova T, Jakobsson PJ, Johnsen JI, Pickova J, Strandvik B, Kogner P, Gleissman H, Wickström M. Omega-3 fatty acids decrease CRYAB, production of oncogenic prostaglandin E 2 and suppress tumor growth in medulloblastoma. Life Sci 2022; 295:120394. [PMID: 35157910 DOI: 10.1016/j.lfs.2022.120394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 12/09/2022]
Abstract
AIMS Medulloblastoma (MB) is one of the most common malignant central nervous system tumors of childhood. Despite intensive treatments that often leads to severe neurological sequelae, the risk for resistant relapses remains significant. In this study we have evaluated the effects of the ω3-long chain polyunsaturated fatty acids (ω3-LCPUFA) docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) on MB cell lines and in a MB xenograft model. MAIN METHODS Effects of ω3-LCPUFA treatment of MB cells were assessed using the following: WST-1 assay, cell death probes, clonogenic assay, ELISA and western blot. MB cells were implanted into nude mice and the mice were randomized to DHA, or a combination of DHA and EPA treatment, or to control group. Treatment effects in tumor tissues were evaluated with: LC-MS/MS, RNA-sequencing and immunohistochemistry, and tumors, erythrocytes and brain tissues were analyzed with gas chromatography. KEY FINDINGS ω3-LCPUFA decreased prostaglandin E2 (PGE2) secretion from MB cells, and impaired MB cell viability and colony forming ability and increased apoptosis in a dose-dependent manner. DHA reduced tumor growth in vivo, and both PGE2 and prostacyclin were significantly decreased in tumor tissue from treated mice compared to control animals. All ω3-LCPUFA and dihomo-γ-linolenic acid increased in tumors from treated mice. RNA-sequencing revealed 10 downregulated genes in common among ω3-LCPUFA treated tumors. CRYAB was the most significantly altered gene and the downregulation was confirmed by immunohistochemistry. SIGNIFICANCE Our findings suggest that addition of DHA and EPA to the standard MB treatment regimen might be a novel approach to target inflammation in the tumor microenvironment.
Collapse
Affiliation(s)
- Linda Ljungblad
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.
| | - Filip Bergqvist
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| | - Conny Tümmler
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Samanthi Madawala
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Thale Kristin Olsen
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Teodora Andonova
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Per-Johan Jakobsson
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| | - John Inge Johnsen
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Jana Pickova
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Birgitta Strandvik
- Department of Biosciences and Nutrition Karolinska Institutet, NEO, Flemingsberg, Stockholm, Sweden
| | - Per Kogner
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden; Pediatric Oncology, Astrid Lindgrens Childrens Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Helena Gleissman
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Malin Wickström
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Neagu AN, Whitham D, Buonanno E, Jenkins A, Alexa-Stratulat T, Tamba BI, Darie CC. Proteomics and its applications in breast cancer. Am J Cancer Res 2021; 11:4006-4049. [PMID: 34659875 PMCID: PMC8493401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023] Open
Abstract
Breast cancer is an individually unique, multi-faceted and chameleonic disease, an eternal challenge for the new era of high-integrated precision diagnostic and personalized oncomedicine. Besides traditional single-omics fields (such as genomics, epigenomics, transcriptomics and metabolomics) and multi-omics contributions (proteogenomics, proteotranscriptomics or reproductomics), several new "-omics" approaches and exciting proteomics subfields are contributing to basic and advanced understanding of these "multiple diseases termed breast cancer": phenomics/cellomics, connectomics and interactomics, secretomics, matrisomics, exosomics, angiomics, chaperomics and epichaperomics, phosphoproteomics, ubiquitinomics, metalloproteomics, terminomics, degradomics and metadegradomics, adhesomics, stressomics, microbiomics, immunomics, salivaomics, materiomics and other biomics. Throughout the extremely complex neoplastic process, a Breast Cancer Cell Continuum Concept (BCCCC) has been modeled in this review as a spatio-temporal and holistic approach, as long as the breast cancer represents a complex cascade comprising successively integrated populations of heterogeneous tumor and cancer-associated cells, that reflect the carcinoma's progression from a "driving mutation" and formation of the breast primary tumor, toward the distant secondary tumors in different tissues and organs, via circulating tumor cell populations. This BCCCC is widely sustained by a Breast Cancer Proteomic Continuum Concept (BCPCC), where each phenotype of neoplastic and tumor-associated cells is characterized by a changing and adaptive proteomic profile detected in solid and liquid minimal invasive biopsies by complex proteomics approaches. Such a profile is created, beginning with the proteomic landscape of different neoplastic cell populations and cancer-associated cells, followed by subsequent analysis of protein biomarkers involved in epithelial-mesenchymal transition and intravasation, circulating tumor cell proteomics, and, finally, by protein biomarkers that highlight the extravasation and distant metastatic invasion. Proteomics technologies are producing important data in breast cancer diagnostic, prognostic, and predictive biomarkers discovery and validation, are detecting genetic aberrations at the proteome level, describing functional and regulatory pathways and emphasizing specific protein and peptide profiles in human tissues, biological fluids, cell lines and animal models. Also, proteomics can identify different breast cancer subtypes and specific protein and proteoform expression, can assess the efficacy of cancer therapies at cellular and tissular level and can even identify new therapeutic target proteins in clinical studies.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of IașiCarol I bvd. No. 22, Iași 700505, Romania
| | - Danielle Whitham
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Emma Buonanno
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Avalon Jenkins
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Teodora Alexa-Stratulat
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and PharmacyIndependenței bvd. No. 16-18, Iași 700021, Romania
| | - Bogdan Ionel Tamba
- Advanced Center for Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and PharmacyMihail Kogălniceanu Street No. 9-13, Iași 700454, Romania
| | - Costel C Darie
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| |
Collapse
|
9
|
Li J, Yu J, Xue W, Huang H, Yan L, Sang F, An S, Zhang J, Wang M, Zhang J, Li H, Cui X, He J, Hu Y. The engineered expression of secreted HSPB5-Fc in CHO cells exhibits cytoprotection in vitro. BMC Biotechnol 2021; 21:39. [PMID: 34126963 PMCID: PMC8204567 DOI: 10.1186/s12896-021-00700-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 05/24/2021] [Indexed: 11/10/2022] Open
Abstract
Background HSPB5 is an ATP-independent molecular chaperone that is induced by heat shock or other proteotoxic stresses. HSPB5 is cytoprotective against stress both intracellularly and extracellularly. It acts as a potential therapeutic candidate in ischemia-reperfusion and neurodegenerative diseases. Results In this paper, we constructed a recombinant plasmid that expresses and extracellularly secrets a HSPB5-Fc fusion protein (sHSPB5-Fc) at 0.42 μg/ml in CHO-K1 cells. This sHSPB5-Fc protein contains a Fc-tag at the C-terminal extension of HSPB5, facilitating protein-affinity purification. Our study shows that sHSPB5-Fc inhibits heat-induced aggregation of citrate synthase in a time and dose dependent manner in vitro. Administration of sHSPB5-Fc protects lens epithelial cells against cisplatin- or UVB-induced cell apoptosis. It also decreases GFP-Httex1-Q74 insolubility, and reduces the size and cytotoxicity of GFP-Httex1-Q74 aggregates in PC-12 cells. Conclusion This recombinant sHSPB5-Fc exhibits chaperone activity to protect cells against proteotoxicity. Supplementary Information The online version contains supplementary material available at 10.1186/s12896-021-00700-y.
Collapse
Affiliation(s)
- Jing Li
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, School of Basic Medical Sciences, Henan University, Jin-Ming Road, Kaifeng, 475004, China.,Kaifeng Key Lab for Cataract and Myopia, Institute of Eye Disease, Kaifeng Central Hospital, Kaifeng, China
| | - Jingjing Yu
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, School of Basic Medical Sciences, Henan University, Jin-Ming Road, Kaifeng, 475004, China
| | - Wenxian Xue
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, School of Basic Medical Sciences, Henan University, Jin-Ming Road, Kaifeng, 475004, China
| | - Huili Huang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, School of Basic Medical Sciences, Henan University, Jin-Ming Road, Kaifeng, 475004, China
| | - Longjun Yan
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, School of Basic Medical Sciences, Henan University, Jin-Ming Road, Kaifeng, 475004, China
| | - Fan Sang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, School of Basic Medical Sciences, Henan University, Jin-Ming Road, Kaifeng, 475004, China
| | - Shuangshuang An
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, School of Basic Medical Sciences, Henan University, Jin-Ming Road, Kaifeng, 475004, China
| | - Jing Zhang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, School of Basic Medical Sciences, Henan University, Jin-Ming Road, Kaifeng, 475004, China
| | - Mingli Wang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, School of Basic Medical Sciences, Henan University, Jin-Ming Road, Kaifeng, 475004, China
| | - Jun Zhang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, School of Basic Medical Sciences, Henan University, Jin-Ming Road, Kaifeng, 475004, China
| | - Hui Li
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, School of Basic Medical Sciences, Henan University, Jin-Ming Road, Kaifeng, 475004, China
| | - Xiukun Cui
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, School of Basic Medical Sciences, Henan University, Jin-Ming Road, Kaifeng, 475004, China
| | - Jiang He
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yanzhong Hu
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, School of Basic Medical Sciences, Henan University, Jin-Ming Road, Kaifeng, 475004, China. .,Kaifeng Key Lab for Cataract and Myopia, Institute of Eye Disease, Kaifeng Central Hospital, Kaifeng, China. .,Department of Ophthalmology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
10
|
Nguyen LKC, Shimizu A, Soh JEC, Komeno M, Sato A, Ogita H. Transmembrane protein 168 mutation reduces cardiomyocyte cell surface expression of Nav1.5 through αB-crystallin intracellular dynamics. J Biochem 2021; 170:577-585. [PMID: 34086898 DOI: 10.1093/jb/mvab066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/01/2021] [Indexed: 11/14/2022] Open
Abstract
Transmembrane protein 168 (TMEM168) was found to be localized on the nuclear membrane. A heterozygous mutation (c.1616G>A, p. R539Q) in TMEM168 was identified in patients with Brugada syndrome. This mutation reduced expression of cardiomyocyte sodium channel Nav1.5 via Nedd4-2 E3 ubiquitin ligase-induced ubiquitination and degradation. However, the detailed molecular mechanism provoked by the TMEM168 mutant remains unclear. Here, we demonstrated that small heat shock protein αB-crystallin, which can bind to Nav1.5 and Nedd4-2 and interfere with the association of both proteins, was strongly recruited from the cell surface to the perinuclear region because of the much higher interaction of αB-crystallin with the TMEM168 mutant than with wild-type TMEM168. Following knockdown of αB-crystallin in HL-1 cardiomyocytes, the interaction of Nav1.5 with Nedd4-2 was increased, despite a reduction of the expression level of Nav1.5. Moreover, αB-crystallin-mediated reduction of Nav1.5 expression was rescued in the presence of a proteasome inhibitor MG-132, suggesting the importance of the αB-crystallin-modulated ubiquitin-proteasome system for the stability of Nav1.5 expression. Collectively, the balance of molecular interactions among Nav1.5, Nedd4-2, and αB-crystallin plays a role in the regulation of cardiomyocyte cell surface expression of Nav1.5, and the TMEM168 mutant disturbs this balance, resulting in a decrease in Nav1.5 expression.
Collapse
Affiliation(s)
- Le Kim Chi Nguyen
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science
| | - Akio Shimizu
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science
| | - Joanne Ern Chi Soh
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science
| | - Masahiro Komeno
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science
| | - Akira Sato
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science
| | - Hisakazu Ogita
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science
| |
Collapse
|
11
|
Quinlan PR, Figeuredo G, Mongan N, Jordan LB, Bray SE, Sreseli R, Ashfield A, Mitsch J, van den Ijssel P, Thompson AM, Quinlan RA. Cluster analyses of the TCGA and a TMA dataset using the coexpression of HSP27 and CRYAB improves alignment with clinical-pathological parameters of breast cancer and suggests different epichaperome influences for each sHSP. Cell Stress Chaperones 2021; 27:177-188. [PMID: 35235182 PMCID: PMC8943080 DOI: 10.1007/s12192-022-01258-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/26/2022] [Accepted: 01/30/2022] [Indexed: 12/05/2022] Open
Abstract
Our cluster analysis of the Cancer Genome Atlas for co-expression of HSP27 and CRYAB in breast cancer patients identified three patient groups based on their expression level combination (high HSP27 + low CRYAB; low HSP27 + high CRYAB; similar HSP27 + CRYAB). Our analyses also suggest that there is a statistically significant inverse relationship between HSP27 and CRYAB and known clinicopathological markers in breast cancer. Screening an unbiased 248 breast cancer patient tissue microarray (TMA) for the protein expression of HSP27 and phosphorylated HSP27 (HSP27-82pS) with CRYAB also identified three patient groups based on HSP27 and CRYAB expression levels. TMA24 also had recorded clinical-pathological parameters, such as ER and PR receptor status, patient survival, and TP53 mutation status. High HSP27 protein levels were significant with ER and PR expression. HSP27-82pS associated with the best patient survival (Log Rank test). High CRYAB expression in combination with wild-type TP53 was significant for patient survival, but a different patient outcome was observed when mutant TP53 was combined with high CRYAB expression. Our data suggest that HSP27 and CRYAB have different epichaperome influences in breast cancer, but more importantly evidence the value of a cluster analysis that considers their coexpression. Our approach can deliver convergence for archival datasets as well as those from recent treatment and patient cohorts and can align HSP27 and CRYAB expression to important clinical-pathological features of breast cancer.
Collapse
Affiliation(s)
- Philip R Quinlan
- Digital Research Service, University of Nottingham, Nottingham, NG8 1BB, UK
- Dundee Cancer Centre, Ninewells Hospital and Medical School, Dundee, DD1 9SY, UK
- School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Grazziela Figeuredo
- Digital Research Service, University of Nottingham, Nottingham, NG8 1BB, UK
- School of Computer Science, University of Nottingham, Nottingham, NG8 1BB, UK
| | - Nigel Mongan
- Faculty of Medicine and Health Sciences, Biodiscovery Institute University Park, Nottingham, NG7 2RD, UK
| | - Lee B Jordan
- Dundee Cancer Centre, Ninewells Hospital and Medical School, Dundee, DD1 9SY, UK
- NHS Tayside, Department of Pathology, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Susan E Bray
- Dundee Cancer Centre, Ninewells Hospital and Medical School, Dundee, DD1 9SY, UK
- Tayside Tissue Bank Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Roman Sreseli
- Dundee Cancer Centre, Ninewells Hospital and Medical School, Dundee, DD1 9SY, UK
| | - Alison Ashfield
- Dundee Cancer Centre, Ninewells Hospital and Medical School, Dundee, DD1 9SY, UK
| | - Jurgen Mitsch
- Digital Research Service, University of Nottingham, Nottingham, NG8 1BB, UK
| | - Paul van den Ijssel
- Faculty of Medicine and Health Sciences, Biodiscovery Institute University Park, Nottingham, NG7 2RD, UK
- , Lelystad, Netherlands
| | - Alastair M Thompson
- Dundee Cancer Centre, Ninewells Hospital and Medical School, Dundee, DD1 9SY, UK.
- Dan L Duncan Comprehensive Cancer Center, Houston, TX 77030, USA.
| | - Roy A Quinlan
- Department of Biosciences, The University of Durham, Upper Mountjoy Science Site South Road, Durham, DH1 3LE, UK.
| |
Collapse
|
12
|
D’Amico D, Fiore R, Caporossi D, Di Felice V, Cappello F, Dimauro I, Barone R. Function and Fiber-Type Specific Distribution of Hsp60 and αB-Crystallin in Skeletal Muscles: Role of Physical Exercise. BIOLOGY 2021; 10:biology10020077. [PMID: 33494467 PMCID: PMC7911561 DOI: 10.3390/biology10020077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/19/2022]
Abstract
Simple Summary Skeletal muscle represents about 40% of the body mass in humans and it is a copious and plastic tissue, rich in proteins that are subject to continuous rearrangements. Physical exercise is considered a physiological stressor for different organs, in particular for skeletal muscle, and it is a factor able to stimulate the cellular remodeling processes related to the phenomenon of adaptation. All cells respond to various stress conditions by up-regulating the expression and/or activation of a group of proteins called heat shock proteins (HSPs). Although their expression is induced by several stimuli, they are commonly recognized as HSPs due to the first experiments showing their increased transcription after application of heat shock. These proteins are molecular chaperones mainly involved in assisting protein transport and folding, assembling multimolecular complexes, and triggering protein degradation by proteasome. Among the HSPs, a special attention needs to be devoted to Hsp60 and αB-crystallin, proteins constitutively expressed in the skeletal muscle, where they are known to be important in muscle physiopathology. Therefore, here we provide a critical update on their role in skeletal muscle fibers after physical exercise, highlighting the control of their expression, their biological function, and their specific distribution within skeletal muscle fiber-types. Abstract Skeletal muscle is a plastic and complex tissue, rich in proteins that are subject to continuous rearrangements. Skeletal muscle homeostasis can be affected by different types of stresses, including physical activity, a physiological stressor able to stimulate a robust increase in different heat shock proteins (HSPs). The modulation of these proteins appears to be fundamental in facilitating the cellular remodeling processes related to the phenomenon of training adaptations such as hypertrophy, increased oxidative capacity, and mitochondrial activity. Among the HSPs, a special attention needs to be devoted to Hsp60 and αB-crystallin (CRYAB), proteins constitutively expressed in the skeletal muscle, where their specific features could be highly relevant in understanding the impact of different volumes of training regimes on myofiber types and in explaining the complex picture of exercise-induced mechanical strain and damaging conditions on fiber population. This knowledge could lead to a better personalization of training protocols with an optimal non-harmful workload in populations of individuals with different needs and healthy status. Here, we introduce for the first time to the reader these peculiar HSPs from the perspective of exercise response, highlighting the control of their expression, biological function, and specific distribution within skeletal muscle fiber-types.
Collapse
Affiliation(s)
- Daniela D’Amico
- Human Anatomy Section, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (D.D.); (V.D.F.)
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, TX 77554, USA
| | - Roberto Fiore
- Postgraduate School of Sports Medicine, University Hospital of Palermo, 90127 Palermo, Italy;
| | - Daniela Caporossi
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy;
| | - Valentina Di Felice
- Human Anatomy Section, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (D.D.); (V.D.F.)
| | - Francesco Cappello
- Human Anatomy Section, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (D.D.); (V.D.F.)
- Euro-Mediterranean Institutes of Science and Technology (IEMEST), 90139 Palermo, Italy
- Correspondence: (F.C.); (I.D.); (R.B.); Tel.: +39-091-2386-5823 (F.C. & R.B.); +39-06-3673-3562 (I.D.)
| | - Ivan Dimauro
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy;
- Correspondence: (F.C.); (I.D.); (R.B.); Tel.: +39-091-2386-5823 (F.C. & R.B.); +39-06-3673-3562 (I.D.)
| | - Rosario Barone
- Human Anatomy Section, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (D.D.); (V.D.F.)
- Correspondence: (F.C.); (I.D.); (R.B.); Tel.: +39-091-2386-5823 (F.C. & R.B.); +39-06-3673-3562 (I.D.)
| |
Collapse
|