1
|
Lee S. Effect of Tunicamycin on Viability, Motility, Reactive Oxygen Species, Nitric Oxide, and Lipid Peroxidation in Boar Sperm. Animals (Basel) 2025; 15:1422. [PMID: 40427299 PMCID: PMC12108351 DOI: 10.3390/ani15101422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2025] [Revised: 05/09/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Tunicamycin induces endoplasmic reticulum stress in mammalian cells. Our study aimed to investigate the effect of tunicamycin on the motility and viability of sperm, reactive oxygen species, nitric oxide, and lipid peroxidation in boar sperm. We treated 1.0, 2.0, 5.0, and 10 μM of tunicamycin in boar semen, and experimental treatments were performed. The viability (55.44%, 53.20, and 40.00%, p < 0.05) and motility (73.28%, 71.48%, and 54.48%, p < 0.05) of sperm at 2.0, 5.0, and 10.0 μM were decreased by tunicamycin, and the levels of reactive oxygen species and lipid peroxidation in tunicamycin-treated boar semen were increased (p < 0.05). However, the nitric oxide level was not changed by tunicamycin. Based on the results, we indicated that tunicamycin induces cell death by increasing oxidative stress in boar sperm, which may be the cause of decreased sperm viability and motility. Thus, we suggest that tunicamycin may induce cell death due to oxidative stress by reactive oxygen species and lipid peroxidation.
Collapse
Affiliation(s)
- Seunghyung Lee
- College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
2
|
Ji Y, Jiang Q, Chen B, Chen X, Li A, Shen D, Shen Y, Liu H, Qian X, Yao X, Sun H. Endoplasmic reticulum stress and unfolded protein response: Roles in skeletal muscle atrophy. Biochem Pharmacol 2025; 234:116799. [PMID: 39952329 DOI: 10.1016/j.bcp.2025.116799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/18/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Skeletal muscle atrophy is commonly present in various pathological states, posing a huge burden on society and patients. Increased protein hydrolysis, decreased protein synthesis, inflammatory response, oxidative stress, mitochondrial dysfunction, endoplasmic reticulum stress (ERS) and unfolded protein response (UPR) are all important molecular mechanisms involved in the occurrence and development of skeletal muscle atrophy. The potential mechanisms of ERS and UPR in skeletal muscle atrophy are extremely complex and have not yet been fully elucidated. This article elucidates the molecular mechanisms of ERS and UPR, and discusses their effects on different types of muscle atrophy (muscle atrophy caused by disuse, cachexia, chronic kidney disease (CKD), diabetes mellitus (DM), amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), spinal and bulbar muscular atrophy (SBMA), aging, sarcopenia, obesity, and starvation), and explores the preventive and therapeutic strategies targeting ERS and UPR in skeletal muscle atrophy, including inhibitor therapy and drug therapy. This review aims to emphasize the importance of endoplasmic reticulum (ER) in maintaining skeletal muscle homeostasis, which helps us further understand the molecular mechanisms of skeletal muscle atrophy and provides new ideas and insights for the development of effective therapeutic drugs and preventive measures for skeletal muscle atrophy.
Collapse
Affiliation(s)
- Yanan Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Quan Jiang
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, Nantong, Jiangsu Province 226600, PR China
| | - Bingqian Chen
- Department of Orthopedics, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, Changshu, Jiangsu Province 215500, PR China
| | - Xin Chen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Aihong Li
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Dingding Shen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Hua Liu
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, Nantong, Jiangsu Province 226600, PR China
| | - Xiaowei Qian
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province 226001, PR China.
| | - Xinlei Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province 226001, PR China.
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province 226001, PR China; Research and Development Center for E-Learning, Ministry of Education, Beijing 100816, PR China.
| |
Collapse
|
3
|
Cao Z, Zhao C, Mo S, Gao BH, Liu M. The impact of tangeretin combined with whey protein on exercise-induced bronchoconstriction in professional athletes: a placebo-controlled trial. J Int Soc Sports Nutr 2024; 21:2414870. [PMID: 39422600 PMCID: PMC11492410 DOI: 10.1080/15502783.2024.2414870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Exercise-induced bronchoconstriction (EIB) is highly prevalent in athletes. The objective of this study was to assess the therapeutic efficacy of daily tangeretin combined with whey protein supplementation over a period of 4 weeks in professional athletes with EIB. METHODS Using a placebo-controlled, double-blind, paired, randomized trial design, a cohort of 30 professional athletes with EIB, consisting of 14 females and 16 males, was divided into two groups: the tangeretin combined with whey protein intervention group (TIG), and the placebo control group (PCG). Both the TIG and PCG underwent exercise challenge tests (ECT) and VO2max tests before (ECT1, V1) and after (ECT2, V2) the intervention. Blood (eosinophils, neutrophils, and basophils) and serum (interleukin-5, IL-5; interleukin-8, IL-8; Clara cell secretory protein-16, CC16; immunoglobulin E, IgE) levels were measured early in the morning of ECT1 and ECT2, respectively. Lung function was assessed immediately before and post-ECT immediately. RESULTS Tangeretin combined with whey protein use for 4 weeks attenuated the decrease in forced expiratory volume in 1 s (FEV1) post trials (∆FEV1(ECT1-ECT2): mean (SD) TIG -7.51(6.9)% vs. PCG -2.33(11.49)%, p = 0.013). Tangeretin also substantially attenuated IL-5 concentration (∆IL-5(T1-T5): Tangeretin -19.4% vs Placebo + 8.37%, p = 0.022); IL-8 concentration (∆IL-8(T1-T5): Tangeretin -17.28% vs Placebo + 6.1%, p = 0.012); CC16 concentration (∆CC16(T1-T5): Tangeretin -11.77% vs Placebo + 24.19%); and IgE concentration in the serum (∆IgE(T1-T5): Tangeretin -24.1% vs Placebo -3.9%), and significantly decreased neutrophil count (∆N(T1-T5): Tangeretin -11.34% vs Placebo + 0.3%) and eosinophil count in blood (∆N(T1-T5): Tangeretin -38.5% vs Placebo + 4.35%). Compared with V1, VO2max (p = 0.042) and TLim (p = 0.05) of V2 were significantly increased in the TIG, and there was no significant change in the PCG. Meanwhile, six athletes in the TIG and 0 athletes in the PCG became EIB-negative at ECT2; the overall negative conversion rate of EIB was 40.00% in TCG. Additionally, the number of cough symptoms decreased from 9 to 3 and dyspnea from 4 to 2 in the TIG. CONCLUSION After high-intensity exercise, athletes with EIB achieved significant improvements in lung function and blood inflammatory factors by combining tangeretin and whey protein supplementation. EIB athletes also showed longer exercise endurance and VO2max at 4 weeks after TI. In addition, some patient symptoms disappeared after combination supplementation. The effect of this treatment on professional athletes with EIB was beneficial.
Collapse
Affiliation(s)
- Zhi Cao
- Shanghai University of Sport, School of Athletic Performance, Shanghai, China
| | - Can Zhao
- Shanghai University of Sport, School of Athletic Performance, Shanghai, China
| | - Shiwei Mo
- Shenzhen University, School of Physical Education, Shenzhen, China
| | - Bing-Hong Gao
- Shanghai University of Sport, School of Athletic Performance, Shanghai, China
| | - Meng Liu
- Chongqing University, Chongqing, China
- Chongqing Institute of Sport Science, Chongqing administration of sport, Chongqing, China
| |
Collapse
|
4
|
Anto EM, Jayamurthy P. Tangeretin enhances pancreatic beta-TC-6 function by ameliorating tunicamycin-induced cellular perturbations. Mol Biol Rep 2023; 51:43. [PMID: 38158492 DOI: 10.1007/s11033-023-09013-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/06/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Pancreatic beta cell health and its insulin-secreting potential are severely compromised under the diabetic condition. One of the key mediators of beta cell dysfunction is endoplasmic reticulum (ER) stress. Pharmacological intervention of ER stress and associated complications in pancreatic beta cells may be an effective strategy for the management of diabetes. In the present study, we evaluated the efficacy of tangeretin, a citrus pentamethoxyflavone, in the alleviation of ER stress and associated perturbations in pancreatic Beta-TC-6 cell lines. METHODS AND RESULTS Tunicamycin (pharmacological ER stress inducer) at subtoxic levels was observed to induce beta cell dysfunction by upregulation of intracellular ROS levels, lowering mitochondrial number/biogenesis and membrane potential, elevation of UPR markers, XBP-1, GADD153, and ER resident chaperones. Treatment with tangeretin was successful in improving the beta cell function by lowering the ROS levels and improving the mitochondrial biogenesis and mitochondrial membrane potential. Tangeretin also downregulated the expression levels of XBP-1, GADD153, and ER resident chaperones. GLUT2 expression, however, did not undergo any significant change under ER stress. We also observed altered expression of Pdx-1, TRB3, and p-Akt under the ER stress condition. Tangeretin augmented the expression levels of Pdx-1, and p-Akt while curtailing the expression of TRB3 in beta cells. Tunicamycin treatment suppressed the insulin levels, however, co-treatment with tangeretin could only marginally improve the levels. CONCLUSION Targeting ER stress and associated pathways in pancreatic Beta-TC-6 cell lines by tangeretin can be an effective strategy for improving beta cell function.
Collapse
Affiliation(s)
- Eveline M Anto
- Agro-Processing & Technology Division, Department of Biochemistry, CSIR-National Institute for Interdisciplinary Science & Technology, Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - P Jayamurthy
- Agro-Processing & Technology Division, Department of Biochemistry, CSIR-National Institute for Interdisciplinary Science & Technology, Thiruvananthapuram, Kerala, 695019, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|