1
|
Huang CJ, Choo KB. Frequent dysregulation of multiple circular RNA isoforms with diverse regulatory mechanisms in cancer - Insights from circFNDC3B and beyond: Why unique circular RNA identifiers matter. Biochem Biophys Res Commun 2025; 758:151627. [PMID: 40112536 DOI: 10.1016/j.bbrc.2025.151627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/09/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
Circular RNAs (circRNAs) are post-transcriptional regulators generated through backsplicing of pre-mRNAs, primarily comprising exons of host genes. A single host gene may produce multiple circRNA isoforms with distinct structures and sequences. Dysregulated circRNA expression has been implicated in tumorigenesis. This review aims to investigate the selection and regulatory roles of circRNA isoforms in cancer using the extensively studied hsa_circFNDC3B and thirteen other circRNAs as study models. Interrogation of literature and databases, particularly the circBase, confirms that host genes generate a plethora of circRNA isoforms; however, only a small subset of isoforms is validated as dysregulated in tumor tissues. Notably, two or more isoforms of the same circRNA are frequently dysregulated in cancer. Structurally, short isoforms retaining 5'-proximal exons are preferentially selected, but for long host genes, circRNAs may arise from mid- or 3'-regions. We identify dysregulation of seven circFNDC3B isoforms across twelve cancer types and multi-isoforms in nine of the other thirteen circRNAs also in multiple cancers. MicroRNA sponging appears to be the major regulatory mechanism, but possible biased study designs raise concerns. Using circFNDC3B and circZFR as examples, we show inconsistency and inadequacy in circRNA nomenclature in different databases and the literature, underscoring the urgent need for a universally accepted standardized central circRNA database. As an interim measure, we propose guidelines for circRNA nomenclature in journal publications. Our findings caution against indiscriminate clinical use of specific circRNA isoforms as biomarkers or therapeutic targets without further validation.
Collapse
Affiliation(s)
- Chiu-Jung Huang
- Department of Animal Science & Graduate Institute of Biotechnology, College of Environmental Planning & Bioresources (former School of Agriculture), Chinese Culture University, Taipei, 111114, Taiwan.
| | - Kong Bung Choo
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan.
| |
Collapse
|
2
|
Huang Y, Su T. Dysregulation of LINC01094 is involved in the pathogenesis of pulpitis by regulating the miR-340-5p expression. Odontology 2025:10.1007/s10266-024-01046-5. [PMID: 39786709 DOI: 10.1007/s10266-024-01046-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/13/2024] [Indexed: 01/12/2025]
Abstract
Pulpitis seriously affects people's living standards and dental health, so identifying effective therapeutic targets is crucial for pulpitis. The research aimed to explore the underlying regulatory mechanism of LINC01094 and miR-340-5p in pulpitis. The study involved a total of 173 subjects (97 pulpitis and 76 healthy individuals). The expression of LINC01094 and miR-340-5p were evaluated through the polymerase chain reaction (PCR). The association linking LINC01094 and miR-340-5p expression was assessed by Pearson correlation analysis. The Human dental pulp cells (HDPCs) injury model was conducted by lipopolysaccharide (LPS). Cell proliferation was examined through the Cell Counting Kit-8 assay and flow cytometry. Cell apoptosis was also evaluated by flow cytometry. The caspase-3 levels and inflammatory cytokines were quantified using an enzyme-linked immunosorbent assay (ELISA). Upregulated LINC01094 and downregulated miR-340-5p expression were observed in pulpitis and LPS-induced HDPC injury models. A negative correlation was observed between miR-340-5p and LINC01094 expression in pulpitis. LPS could suppress proliferation and promote apoptosis of HDPCs. The TNF-α, IL-6, and IL-1β levels in LPS-induced HDPCs were also elevated. The HDPC injury induced by LPS could be aggravated by the LINC01094 overexpression. MiR-340-5p showed a relieved effect on HDPC injury and could alleviate the HDPC injury aggravated by LINC01094 overexpression. In summary, upregulated LINC01094 and downregulated miR-340-5p expression was observed in pulpitis. LINC01094 could accelerate the pulpitis progression via targeting miR-340-5p.
Collapse
Affiliation(s)
- Yuao Huang
- Jinzhou Medical University Graduate Training Base (Central Hospital of Fengxian District, Shanghai), Shanghai, 201499, China
- Department of Stomatology, Shanghai Fengxian District Traditional Chinese Medicine Hospital, Shanghai, 201499, China
| | - Tao Su
- Department of Stomatology, Shanghai Fengxian District Central Hospital, No.6600 Nanfeng Highway, Shanghai, 201400, China.
| |
Collapse
|
3
|
Xu Z, Guan C, Cheng Z, Zhou H, Qin W, Feng J, Wan M, Zhang Y, Jia C, Shao S, Guo H, Li S, Liu B. Research trends and hotspots of circular RNA in cardiovascular disease: A bibliometric analysis. Noncoding RNA Res 2024; 9:930-944. [PMID: 38680417 PMCID: PMC11047193 DOI: 10.1016/j.ncrna.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024] Open
Abstract
From a global perspective, cardiovascular diseases (CVDs), the leading factor accounting for population mortality, and circRNAs, RNA molecules with stable closed-loop structures, have been proven to be closely related. The latent clinical value and the potential role of circRNAs in CVDs have been attracting increasing, active research interest, but bibliometric studies in this field are still lacking. Thus, in this study, we conducted a bibliometric analysis by using software such as VOSviewer, CiteSpace, Microsoft Excel, and the R package to determine the current research progress and hotspots and ultimately provide an overview of the development trends and future frontiers in this field. In our study, based on our search strategy, a total of 1206 publications published before July 31, 2023 were accessed from the WOSCC database. According to our findings, there is a notable increasing trend in global publications in the field of circRNA in CVDs. China was found to be the dominant country in terms of publication number, but a lack of high-quality articles was a significant fault. A cluster analysis on the co-cited references indicated that dilated cardiomyopathy, AMI, and cardiac hypertrophy are the greatest objects of concern. In contrast, a keywords analysis indicated that high importance has been ascribed to MI, abdominal aortic aneurysm, cell proliferation, and coronary artery diseases.
Collapse
Affiliation(s)
- Zehui Xu
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chong Guan
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ziji Cheng
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Houle Zhou
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wanting Qin
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Jiaming Feng
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Melisandre Wan
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yihan Zhang
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chengyao Jia
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Shuijin Shao
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Haidong Guo
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shaoling Li
- Department of Pathology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Baonian Liu
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
4
|
Wang Y, Zhang J, Yang Y, Liu Z, Sun S, Li R, Zhu H, Li T, Zheng J, Li J, Ma L. Circular RNAs in human diseases. MedComm (Beijing) 2024; 5:e699. [PMID: 39239069 PMCID: PMC11374765 DOI: 10.1002/mco2.699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/07/2024] Open
Abstract
Circular RNAs (circRNAs) are a unique class of RNA molecules formed through back-splicing rather than linear splicing. As an emerging field in molecular biology, circRNAs have garnered significant attention due to their distinct structure and potential functional implications. A comprehensive understanding of circRNAs' functions and potential clinical applications remains elusive despite accumulating evidence of their involvement in disease pathogenesis. Recent research highlights their significant roles in various human diseases, but comprehensive reviews on their functions and applications remain scarce. This review provides an in-depth examination of circRNAs, focusing first on their involvement in non-neoplastic diseases such as respiratory, endocrine, metabolic, musculoskeletal, cardiovascular, and renal disorders. We then explore their roles in tumors, with particular emphasis on exosomal circular RNAs, which are crucial for cancer initiation, progression, and resistance to treatment. By detailing their biogenesis, functions, and impact on disease mechanisms, this review underscores the potential of circRNAs as diagnostic biomarkers and therapeutic targets. The review not only enhances our understanding of circRNAs' roles in specific diseases and tumor types but also highlights their potential as novel diagnostic and therapeutic tools, thereby paving the way for future clinical investigations and potential therapeutic interventions.
Collapse
Affiliation(s)
- Yuanyong Wang
- Department of Thoracic Surgery Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) The First Department of Thoracic Surgery Peking University Cancer Hospital and Institute Peking University School of Oncology Beijing China
| | - Jin Zhang
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
| | - Yuchen Yang
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
| | - Zhuofeng Liu
- Department of Traditional Chinese Medicine The Third Affiliated Hospital of Xi'an Medical University Xi'an China
| | - Sijia Sun
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
| | - Rui Li
- Department of Epidemiology School of Public Health Air Force Medical University Xi'an China
| | - Hui Zhu
- Department of Anatomy Medical College of Yan'an University Yan'an China
- Institute of Medical Research Northwestern Polytechnical University Xi'an China
| | - Tian Li
- School of Basic Medicine Fourth Military Medical University Xi'an China
| | - Jin Zheng
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
| | - Jie Li
- Department of Endocrine Xijing 986 Hospital Air Force Medical University Xi'an China
| | - Litian Ma
- Department of Thoracic Surgery Tangdu Hospital Air Force Medical University Xi'an China
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
- Department of Gastroenterology Tangdu Hospital Air Force Medical University Xi'an China
- School of Medicine Northwest University Xi'an China
| |
Collapse
|
5
|
Zhang L, Luo X, Tang R, Wu Y, Liang Z, Liu J, Pi J, Zhang H. MiR-106a-5p by Targeting MAP3K2 Promotes Repair of Oxidative Stress Damage to the Intestinal Barrier in Prelaying Ducks. Animals (Basel) 2024; 14:1037. [PMID: 38612276 PMCID: PMC11010895 DOI: 10.3390/ani14071037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/08/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Under caged stress conditions, severe disruptions in duck intestinal barrier function, which adversely affect economic performance, have been observed. MiRNAs play a crucial role in cellular processes, but the mechanisms underlying their involvement in repairing oxidative stress-induced damage to duck intestinal barriers have not been elucidated. We performed miRNA-seq and protein tandem mass tagging (TMT) sequencing and identified differentially expressed miRNAs and proteins in oxidative stress-treated ducks. Dual-luciferase reporter vector experiments, RT-qPCR, and Western blotting revealed the regulatory role of apla-miR-106a-5p/MAP3K2 in intestinal barrier damage repair. The results showed that oxidative stress led to shortened villi and deepened crypts, impairing intestinal immune function. Significant downregulation of apla-miR-106a-5p was revealed by miRNA-seq, and the inhibition of its expression not only enhanced cell viability but also improved intestinal barrier function. TMT protein sequencing revealed MAP3K2 upregulation in caged-stressed duck intestines, and software analysis confirmed MAP3K2 as the target gene of apla-miR-106a-5p. Dual-fluorescence reporter gene experiments demonstrated direct targeting of MAP3K2 by apla-miR-106a-5p. RT-qPCR showed no effect on MAP3K2 expression, while Western blot analysis indicated that MAP3K2 protein expression was suppressed. In summary, apla-miR-106a-5p targets MAP3K2, regulating gene expression at the transcriptional level and facilitating effective repair of intestinal barrier damage. This discovery provides new insights into the molecular mechanisms of physiological damage in ducks under caged stress, offering valuable guidance for related research.
Collapse
Affiliation(s)
- Li Zhang
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (L.Z.); (X.L.); (R.T.); (Y.W.); (Z.L.); (J.P.)
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China;
| | - Xiang Luo
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (L.Z.); (X.L.); (R.T.); (Y.W.); (Z.L.); (J.P.)
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China;
| | - Rui Tang
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (L.Z.); (X.L.); (R.T.); (Y.W.); (Z.L.); (J.P.)
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China;
| | - Yan Wu
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (L.Z.); (X.L.); (R.T.); (Y.W.); (Z.L.); (J.P.)
| | - Zhenhua Liang
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (L.Z.); (X.L.); (R.T.); (Y.W.); (Z.L.); (J.P.)
| | - Jingbo Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China;
| | - Jinsong Pi
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (L.Z.); (X.L.); (R.T.); (Y.W.); (Z.L.); (J.P.)
| | - Hao Zhang
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (L.Z.); (X.L.); (R.T.); (Y.W.); (Z.L.); (J.P.)
| |
Collapse
|
6
|
Liu R, Hu L, Zhou Y, Cao Y. Serum circPRDM5 as a novel diagnostic biomarker for acute myocardial infarction. Gene 2024; 899:148142. [PMID: 38184020 DOI: 10.1016/j.gene.2024.148142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/17/2023] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
BACKGROUND Circular RNA (CircRNA) is known to play an important role in cardiovascular diseases, but its use as a biomarker of acute myocardial infarction (AMI) has not been studied. This study explores the feasibility of circPRDM5 as a novel biomarker of AMI. METHODS CircPRDM5 was screened by bioinformatics, the correct circPRDM5 primers were tested by agarose gel electrophoresis (AGE) and Sanger sequencing, and the expression level of serum circPRDM5 was detected by Quantitative Reverse Transcription-Polymerase Chain Reaction. (qRT-PCR), and the diagnostic value of circPRDM5 was analyzed by the receiver operating characteristic (ROC) curve. RESULTS The expression of circPRDM5 in serum of AMI patients was significantly decreased compared with that of healthy control group and angina group (P < 0.001). The area under ROC curve of serum circPRDM5 was 0.862 [95 % CI, 0.814-0.909]. The combined diagnosis of serum circPRDM5, cardiac troponin T (cTnT) and creatine kinase-MB (CK-MB) could improve the sensitivity of diagnosing AMI. The expression level of serum circPRDM5 increased after percutaneous coronary intervention (PCI). CONCLUSIONS CircPRDM5 can be used as a novel biomarker for AMI, and its combination with cTnT and CK-MB can improve diagnostic value.
Collapse
Affiliation(s)
- Ruoyu Liu
- Department of Clinical Laboratory, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lijuan Hu
- Department of Clinical Laboratory, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yun Zhou
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China.
| | - Yongtong Cao
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
7
|
Wójcik M, Plata-Babula A, Głowaczewska A, Sirek T, Orczyk A, Małecka M, Grabarek BO. Expression profile of mRNAs and miRNAs related to mitogen-activated kinases in HaCaT cell culture treated with lipopolysaccharide a and adalimumab. Cell Cycle 2024; 23:385-404. [PMID: 38557266 PMCID: PMC11174132 DOI: 10.1080/15384101.2024.2335051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
Studies indicate that mitogen-activated protein kinases (MAPKs) exhibit activation and overexpression within psoriatic lesions. This study aimed to investigate alterations in the expression patterns of genes encoding MAPKs and microRNA (miRNA) molecules that potentially regulate their expression in human adult low-calcium high-temperature (HaCaT) keratinocytes when exposed to bacterial lipopolysaccharide A (LPS) and adalimumab. HaCaT cells underwent treatment with 1 µg/mL LPS for 8 hours, followed by treatment with 8 µg/mL adalimumab for 2, 8, or 24 hours. Untreated cells served as controls. The molecular analysis involved microarray, quantitative real-time polymerase chain reaction (RTqPCR), and enzyme-linked immunosorbent assay (ELISA) analyses. Changes in the expression profile of seven mRNAs: dual specificity phosphatase 1 (DUSP1), dual specificity phosphatase 3 (DUSP3), dual specificity phosphatase 4 (DUSP4), mitogen-activated protein kinase 9 (MAPK9), mitogen-activated protein kinase kinase kinase 2 (MAP3K2), mitogen-activated protein kinase kinase 2 (MAP2K2), and MAP kinase-activated protein kinase 2 (MAPKAPK2, also known as MK2) in cell culture exposed to LPS or LPS and the drug compared to the control. It was noted that miR-34a may potentially regulate the activity of DUSP1, DUSP3, and DUSP4, while miR-1275 is implicated in regulating MAPK9 expression. Additionally, miR-382 and miR-3188 are potential regulators of DUSP4 levels, and miR-200-5p is involved in regulating MAPKAPK2 and MAP3K2 levels. Thus, the analysis showed that these mRNA molecules and the proteins and miRNAs they encode appear to be useful molecular markers for monitoring the efficacy of adalimumab therapy.
Collapse
Affiliation(s)
- Michał Wójcik
- Collegium Medicum, WSB University, Dabrowa Gornicza, Poland
| | - Aleksandra Plata-Babula
- Department of Nursing and Maternity, High School of Strategic Planning in Dabrowa Gornicza, Dabrowa Gornicza, Poland
| | - Amelia Głowaczewska
- Faculty of Health Sciences, University of Applied Sciences in Nysa, Nysa, Poland
| | - Tomasz Sirek
- Department of Plastic Surgery, Faculty of Medicine, Academia of Silesia, Katowice, Poland
- Department of Plastic and Reconstructive Surgery, Hospital for Minimally Invasive and Reconstructive Surgery in Bielsko-Biała, Bielsko-Biala, Poland
| | - Aneta Orczyk
- Collegium Medicum, WSB University, Dabrowa Gornicza, Poland
| | - Mariola Małecka
- Faculty of Medicine, Uczelnia Medyczna im. Marii Skłodowskiej-Curie, Warszawa, Poland
| | | |
Collapse
|
8
|
Wójcik M, Zmarzły N, Derkacz A, Kulpok-Bagiński T, Blek N, Grabarek BO. Gene expression profile of mitogen-activated kinases and microRNAs controlling their expression in HaCaT cell culture treated with lipopolysaccharide A and cyclosporine A. Cell Cycle 2024; 23:279-293. [PMID: 38445655 PMCID: PMC11057563 DOI: 10.1080/15384101.2024.2320508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/01/2024] [Indexed: 05/01/2024] Open
Abstract
Studies indicate that mitogen-activated protein kinases (MAPKs) are activated and overexpressed in psoriatic lesions. The aim of the study was to assess changes in the expression pattern of genes encoding MAPKs and microRNA (miRNA) molecules potentially regulating their expression in human adult low-calcium high-temperature (HaCaT) keratinocytes exposed to bacterial lipopolysaccharide A (LPS) and cyclosporine A (CsA). HaCaT cells were treated with 1 µg/mL LPS for 8 h, followed by treatment with 100 ng/mL cyclosporine A for 2, 8, or 24 h. Untreated cells served as controls. The molecular analysis consists of microarray, quantitative real-time polymerase chain reaction, and enzyme-linked immunosorbent assay analyses. The statistical analysis of the obtained results was performed using Transcriptome Analysis Console and STATISTICA 13.5 PL with the statistical significance threshold of p < 0.05. Changes in the expression profile of six mRNAs: dual-specificity phosphatase 1 (DUSP1), dual-specificity phosphatase 4 (DUSP4), mitogen-activated protein kinase kinase 2 (MAP2K2), mitogen-activated protein kinase kinase 7 (MAP2K7), mitogen-activated protein kinase kinase kinase 2 (MAP3K2) and mitogen-activated protein kinase 9 (MAPK9) in cell culture exposed to LPS or LPS and the drug compared to the control. We observed that under the LPS and cyclosporine treatment, the expression o/ miR-34a, miR-1275, miR-3188, and miR-382 changed significantly (p < 0.05). We demonstrated a potential relationship between DUSP1 and miR-34a; DUSP4 and miR-34a, miR-382, and miR-3188; MAPK9 and miR-1275, MAP2K7 and mir-200-5p; MAP3K2 and mir-200-5p, which may be the subject of further research in the context of psoriasis.
Collapse
Affiliation(s)
- Michał Wójcik
- Collegium Medicum, WSB University, Dabrowa Gornicza, Poland
| | - Nikola Zmarzły
- Collegium Medicum, WSB University, Dabrowa Gornicza, Poland
| | - Alicja Derkacz
- Collegium Medicum, WSB University, Dabrowa Gornicza, Poland
| | | | - Natasza Blek
- Faculty of Medicine, Uczelnia Medyczna im. Marii Skłodowskiej-Curie, Warszawa, Poland
| | | |
Collapse
|