1
|
Xiao L, An Q, Xu R, Li C, Zhang C, Ma K, Ji F, Azarpazhooh E, Ajami M, Rui X, Li W. Roles of luxS in regulation of probiotic characteristics and inhibition of pathogens in Lacticaseibacillus paracasei S-NB. Microb Pathog 2023; 184:106379. [PMID: 37802157 DOI: 10.1016/j.micpath.2023.106379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 10/08/2023]
Abstract
Lactic acid bacteria (LAB) have excellent tolerance to the gastrointestinal environment and high adhesion ability to intestinal epithelial cells, which could be closely related to the LuxS/AI-2 Quorum sensing (QS) system. Here, the crucial enzymes involved in the synthesis of AI-2 was analyzed in Lacticaseibacillus paracasei S-NB, and the luxS deletion mutant was constructed by homologous recombination based on the Cre-lox system. Afterwards, the effect of luxS gene on the probiotic activities in L. paracasei S-NB was investigated. Notably, the tolerance of simulated gastrointestinal digestion, AI-2 production, ability of auto-aggregation and biofilm formation significantly decreased (p < 0.05 for all) in the S-NB△luxS mutant. Compared to the wild-type S-NB, the degree of reduction in the relative transcriptional level of the biofilm -related genes in Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923 was diminished when co-cultured with S-NB△luxS. Furthermore, the inhibitory effect of S-NB△luxS on the adhesion (competition, exclusion and displacement) of E. coli ATCC 25922 and S. aureus ATCC 25923 to Caco-2 cells markedly decreased. Therefore, comprehensive analysis of the role by luxS provides an insight into the LuxS/AI-2 QS system of L. paracasei S-NB in the regulation of strain characteristics and inhibition of pathogens.
Collapse
Affiliation(s)
- Luyao Xiao
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Qi An
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Ruiqi Xu
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Chen Li
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Changliang Zhang
- Jiangsu New-Bio Biotechnology Co., Ltd., Jiangyin, Jiangsu, 214400, PR China; Jiangsu Biodep Biotechnology Co., Ltd., Jiangyin, Jiangsu, 214400, PR China
| | - Kai Ma
- Jiangsu New-Bio Biotechnology Co., Ltd., Jiangyin, Jiangsu, 214400, PR China; Jiangsu Biodep Biotechnology Co., Ltd., Jiangyin, Jiangsu, 214400, PR China
| | - Feng Ji
- Jiangsu New-Bio Biotechnology Co., Ltd., Jiangyin, Jiangsu, 214400, PR China; Jiangsu Biodep Biotechnology Co., Ltd., Jiangyin, Jiangsu, 214400, PR China
| | - Elham Azarpazhooh
- Khorasan Razavi Agricultural and Natural Resources Research and Education Center, AREEO, Iran
| | - Marjan Ajami
- National Nutrition and Food Technology Research Institute, School of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Xin Rui
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Wei Li
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| |
Collapse
|
2
|
Yu D, Pei Z, Chen Y, Wang H, Xiao Y, Zhang H, Chen W, Lu W. Bifidobacterium longum subsp. infantis as widespread bacteriocin gene clusters carrier stands out among the Bifidobacterium. Appl Environ Microbiol 2023; 89:e0097923. [PMID: 37681950 PMCID: PMC10537742 DOI: 10.1128/aem.00979-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 07/03/2023] [Indexed: 09/09/2023] Open
Abstract
Bifidobacterium is the dominant genus, particularly in the intestinal tract niche of healthy breast-fed infants, and many of these strains have been proven to elicit positive effects on infant development. In addition to its effective antimicrobial activity against detrimental microorganisms, it helps to improve the intestinal microbiota balance. The isolation and identification of bacteriocins from Bifidobacterium have been limited since the mid-1980s, leading to an underestimation of its ability for bacteriocin production. Here, we employed a silicon-based search strategy to mine 354 putative bacteriocin gene clusters (BGCs), most of which have never been reported, from the genomes of 759 Bifidobacterium strains distributed across 9 species. Consistent with previous reports, most Bifidobacterium strains did not carry or carry only a single BGC; however, Bifidobacterium longum subsp. infantis, in contrast to other Bifidobacterium species, carried numerous BGCs, including lanthipeptides, lasso peptides, thiopeptides, and class IId bacteriocins. The antimicrobial activity of the crude bacteriocins and transcription analysis confirmed its potential for bacteriocin biosynthesis. Additionally, we investigated the association of bacteriocins with the phylogenetic positions of their homologs from other genera and niches. In conclusion, this study re-examines a few Bifidobacterium species traditionally regarded as a poor source of bacteriocins. These bacteriocin genes impart a competitive advantage to Bifidobacterium in colonizing the infant intestinal tract. IMPORTANCE Development of the human gut microbiota commences from birth, with bifidobacteria being among the first colonizers of the newborn intestinal tract and dominating it for a considerable period. To date, the genetic basis for the successful adaptation of bifidobacteria to this particular niche remains unclear since studies have mainly focused on glycoside hydrolase and adhesion-related genes. Bacteriocins are competitive factors that help producers maintain colonization advantages without destroying the niche balance; however, they have rarely been reported in Bifidobacterium. The advancement in sequencing methods and bacteriocin databases enables the use of a silicon-based search strategy for the comprehensive and rapid re-evaluation of the bacteriocin distribution of Bifidobacterium. Our study revealed that B. infantis carries abundant bacteriocin biosynthetic gene clusters for the first time, presenting new evidence regarding the competitive interactions of Bifidobacterium in the infant intestinal tract.
Collapse
Affiliation(s)
- Di Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhangming Pei
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yutao Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hongchao Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yue Xiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
3
|
Tagg JR, Harold LK, Jain R, Hale JDF. Beneficial modulation of human health in the oral cavity and beyond using bacteriocin-like inhibitory substance-producing streptococcal probiotics. Front Microbiol 2023; 14:1161155. [PMID: 37056747 PMCID: PMC10086258 DOI: 10.3389/fmicb.2023.1161155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
The human oral cavity contains a diversity of microbial habitats that have been adopted and adapted to as homeland by an amazingly heterogeneous population of microorganisms collectively referred to as the oral microbiota. These microbes generally co-habit in harmonious homeostasis. However, under conditions of imposed stress, as with changes to the host's physiology or nutritional status, or as a response to foreign microbial or antimicrobial incursions, some components of the oral "microbiome" (viz. the in situ microbiota) may enter a dysbiotic state. This microbiome dysbiosis can manifest in a variety of guises including streptococcal sore throats, dental caries, oral thrush, halitosis and periodontal disease. Most of the strategies currently available for the management or treatment of microbial diseases of the oral cavity focus on the repetitive "broad sweep" and short-term culling of oral microbe populations, hopefully including the perceived principal pathogens. Both physical and chemical techniques are used. However, the application of more focused approaches to the harnessing or elimination of key oral cavity pathogens is now feasible through the use of probiotic strains that are naturally adapted for oral cavity colonization and also are equipped to produce anti-competitor molecules such as the bacteriocins and bacteriocin-like inhibitory substances (viz BLIS). Some of these probiotics are capable of suppressing the proliferation of a variety of recognized microbial pathogens of the human mouth, thereby assisting with the restoration of oral microbiome homeostasis. BLIS K12 and BLIS M18, the progenitors of the BLIS-producing oral probiotics, are members of the human oral cavity commensal species Streptococcus salivarius. More recently however, a number of other streptococcal and some non-streptococcal candidate oral probiotics have also been promoted. What is becoming increasingly apparent is that the future for oral probiotic applications will probably extend well beyond the attempted limitation of the direct pathological consequences of oral microbiome dysbiosis to also encompass a plethora of systemic diseases and disorders of the human host. The background to and the evolving prospects for the beneficial modulation of the oral microbiome via the application of BLIS-producing S. salivarius probiotics comprises the principal focus of the present review.
Collapse
|
4
|
Horizontal Transfer of Bacteriocin Biosynthesis Genes Requires Metabolic Adaptation To Improve Compound Production and Cellular Fitness. Microbiol Spectr 2023; 11:e0317622. [PMID: 36472430 PMCID: PMC9927498 DOI: 10.1128/spectrum.03176-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Biosynthetic gene clusters (BGCs) encoding the production of bacteriocins are widespread among bacterial isolates and are important genetic determinants of competitive fitness within a given habitat. Staphylococci produce a tremendous diversity of compounds, and the corresponding BGCs are frequently associated with mobile genetic elements, suggesting gain and loss of biosynthetic capacity. Pharmaceutical biology has shown that compound production in heterologous hosts is often challenging, and many BGC recipients initially produce small amounts of compound or show reduced growth rates. To assess whether transfer of BGCs between closely related Staphylococcus aureus strains can be instantly effective or requires elaborate metabolic adaptation, we investigated the intraspecies transfer of a BGC encoding the ribosomally synthesized and posttranslationally modified peptide (RiPP) micrococcin P1 (MP1). We found that acquisition of the BGC by S. aureus RN4220 enabled immediate MP1 production but also imposed a metabolic burden, which was relieved after prolonged cultivation by adaptive mutation. We used a multiomics approach to study this phenomenon and found adaptive evolution to select for strains with increased activity of the tricarboxylic acid cycle (TCA), which enhanced metabolic fitness and levels of compound production. Metabolome analysis revealed increases of central metabolites, including citrate and α-ketoglutarate in the adapted strain, suggesting metabolic adaptation to overcome the BGC-associated growth defects. Our results indicate that BGC acquisition requires genetic and metabolic predispositions, allowing the integration of bacteriocin production into the cellular metabolism. Inappropriate metabolic characteristics of recipients can entail physiological burdens, negatively impacting the competitive fitness of recipients within natural bacterial communities. IMPORTANCE Human microbiomes are critically associated with human health and disease. Importantly, pathogenic bacteria can hide in human-associated communities and can cause disease when the composition of the community becomes unbalanced. Bacteriocin-producing commensals are able to displace pathogens from microbial communities, suggesting that their targeted introduction into human microbiomes might prevent pathogen colonization and infection. However, to develop probiotic approaches, strains are needed that produce high levels of bioactive compounds and retain cellular fitness within mixed bacterial communities. Our work offers insights into the metabolic burdens associated with the production of the bacteriocin micrococcin P1 and highlights evolutionary strategies that increase cellular fitness in the context of production. Metabolic adaptations are most likely broadly relevant for bacteriocin producers and need to be considered for the future development of effective microbiome editing strategies.
Collapse
|
5
|
Abstract
Microbial communities are complex living systems that populate the planet with diverse functions and are increasingly harnessed for practical human needs. To deepen the fundamental understanding of their organization and functioning as well as to facilitate their engineering for applications, mathematical modeling has played an increasingly important role. Agent-based models represent a class of powerful quantitative frameworks for investigating microbial communities because of their individualistic nature in describing cells, mechanistic characterization of molecular and cellular processes, and intrinsic ability to produce emergent system properties. This review presents a comprehensive overview of recent advances in agent-based modeling of microbial communities. It surveys the state-of-the-art algorithms employed to simulate intracellular biomolecular events, single-cell behaviors, intercellular interactions, and interactions between cells and their environments that collectively serve as the driving forces of community behaviors. It also highlights three lines of applications of agent-based modeling, namely, the elucidation of microbial range expansion and colony ecology, the design of synthetic gene circuits and microbial populations for desired behaviors, and the characterization of biofilm formation and dispersal. The review concludes with a discussion of existing challenges, including the computational cost of the modeling, and potential mitigation strategies.
Collapse
Affiliation(s)
- Karthik Nagarajan
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Congjian Ni
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ting Lu
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,National Center for Supercomputing Applications, Urbana, Illinois 61801, United States
| |
Collapse
|
6
|
Ni C, Lu T. Individual-Based Modeling of Spatial Dynamics of Chemotactic Microbial Populations. ACS Synth Biol 2022; 11:3714-3723. [PMID: 36336839 PMCID: PMC10129442 DOI: 10.1021/acssynbio.2c00322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
One important direction of synthetic biology is to establish desired spatial structures from microbial populations. Underlying this structural development process are different driving factors, among which bacterial motility and chemotaxis serve as a major force. Here, we present an individual-based, biophysical computational framework for mechanistic and multiscale simulation of the spatiotemporal dynamics of motile and chemotactic microbial populations. The framework integrates cellular movement with spatial population growth, mechanical and chemical cellular interactions, and intracellular molecular kinetics. It is validated by a statistical comparison of single-cell chemotaxis simulations with reported experiments. The framework successfully captures colony range expansion of growing isogenic populations and also reveals chemotaxis-modulated, spatial patterns of a two-species amensal community. Partial differential equation-based models subsequently validate these simulation findings. This study provides a versatile computational tool to uncover the fundamentals of microbial spatial ecology as well as to facilitate the design of synthetic consortia for desired spatial patterns.
Collapse
Affiliation(s)
- Congjian Ni
- Center of Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ting Lu
- Center of Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Physics, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.,Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.,National Center for Supercomputing Applications, Urbana, Illinois 61801, United States
| |
Collapse
|
7
|
Meng F, Zhao M, Lu Z. The LuxS/AI-2 system regulates the probiotic activities of lactic acid bacteria. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Oftedal TF, Ovchinnikov KV, Hestad KA, Goldbeck O, Porcellato D, Narvhus J, Riedel CU, Kjos M, Diep DB. Ubericin K, a New Pore-Forming Bacteriocin Targeting mannose-PTS. Microbiol Spectr 2021; 9:e0029921. [PMID: 34643411 PMCID: PMC8515946 DOI: 10.1128/spectrum.00299-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/10/2021] [Indexed: 11/20/2022] Open
Abstract
Bovine mastitis infection in dairy cattle is a significant economic burden for the dairy industry globally. To reduce the use of antibiotics in treatment of clinical mastitis, new alternative treatment options are needed. Antimicrobial peptides from bacteria, also known as bacteriocins, are potential alternatives for combating mastitis pathogens. In search of novel bacteriocins against mastitis pathogens, we screened samples of Norwegian bovine raw milk and found a Streptococcus uberis strain with potent antimicrobial activity toward Enterococcus, Streptococcus, Listeria, and Lactococcus. Whole-genome sequencing of the strain revealed a multibacteriocin gene cluster encoding one class IIb bacteriocin, two class IId bacteriocins, in addition to a three-component regulatory system and a dedicated ABC transporter. Isolation and purification of the antimicrobial activity from culture supernatants resulted in the detection of a 6.3-kDa mass peak by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry, a mass corresponding to the predicted size of one of the class IId bacteriocins. The identification of this bacteriocin, called ubericin K, was further confirmed by in vitro protein synthesis, which showed the same inhibitory spectrum as the purified antimicrobial compound. Ubericin K shows highest sequence similarity to the class IId bacteriocins bovicin 255, lactococcin A, and garvieacin Q. We found that ubericin K uses the sugar transporter mannose phosphotransferase (PTS) as a target receptor. Further, by using the pHlourin sensor system to detect intracellular pH changes due to leakage across the membrane, ubericin K was shown to be a pore former, killing target cells by membrane disruption. IMPORTANCE Bacterial infections in dairy cows are a major burden to farmers worldwide because infected cows require expensive treatments and produce less milk. Today, infected cows are treated with antibiotics, a practice that is becoming less effective due to antibiotic resistance. Compounds other than antibiotics also exist that kill bacteria causing infections in cows; these compounds, known as bacteriocins, are natural products produced by other bacteria in the environment. In this work, we discover a new bacteriocin that we call ubericin K, which kills several species of bacteria known to cause infections in dairy cows. We also use in vitro synthesis as a novel method for rapidly characterizing bacteriocins directly from genomic data, which could be useful for other researchers. We believe that ubericin K and the methods described in this work will aid in the transition away from antibiotics in the dairy industry.
Collapse
Affiliation(s)
- Thomas F. Oftedal
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Kirill V. Ovchinnikov
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Kai A. Hestad
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Oliver Goldbeck
- Institute of Microbiology and Biotechnology, Ulm University, Ulm, Germany
| | - Davide Porcellato
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Judith Narvhus
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | | | - Morten Kjos
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Dzung B. Diep
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
9
|
Development of a new antimicrobial concept for boar semen preservation based on bacteriocins. Theriogenology 2021; 173:163-172. [PMID: 34416447 DOI: 10.1016/j.theriogenology.2021.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/21/2021] [Accepted: 08/05/2021] [Indexed: 01/06/2023]
Abstract
The conventional storage temperature of 16-18 °C provides optimal conditions for the preservation of boar sperm quality, which are extremely cold sensitive cells. On the other hand, however, it requires the addition of antibiotics to inhibit bacterial growth. Rising numbers of antibiotic resistant bacteria call for alternatives to this conventional storing method. As potential alternative, three different bacteriocin candidates with known bacteriolytic activity against E. coli were examined on possible negative effects concerning the sperm quality and on their impact on bacterial growth of E. coli ILSH 02692 in BTS-extended semen w/o antibiotics. Although the lower concentrations (0.01 and 0.25%) of all bacteriocins did not show any impact on the quality of the semen, the higher concentrations (0.5 and 1.0%) of two bacteriocins led to a significant (P < 0.05) reduction in several sperm quality characteristics. The bacteriocin 860/1c after AMS/dialysis did not affect the sperm quality in any of the tested concentrations and in all tested extenders (BTS, MIII, Androstar Premium and Androhep all w/o antibiotics) at 16 °C as well as at 6 °C. This bacteriocin reduced growth of E. coli ILSH 02692 in BTS-extended semen by 50% compared to the control w/o bacteriocin. Furthermore, a preliminary insemination trial indicated no impact of the selected bacteriocin on fertility. These promising results show that the application of bacteriocins in liquid-preserved semen is a feasible possibility in the future.
Collapse
|
10
|
Bu Y, Yang H, Li J, Liu Y, Liu T, Gong P, Zhang L, Wang S, Yi H. Comparative Metabolomics Analyses of Plantaricin Q7 Production by Lactobacillus plantarum Q7. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10741-10748. [PMID: 34478301 DOI: 10.1021/acs.jafc.1c03533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Plantaricin Q7 is a bacteriocin produced by Lactobacillus plantarum Q7 with food preservation potential. Low yield is one of the bottlenecks of the wide application of plantaricin Q7. Nontargeted metabolomics was performed to reveal the mechanism of plantaricin Q7 biosynthesis. The results showed that the composition and abundance of intracellular metabolites varied significantly at key time points of plantaricin Q7 synthesis. Differential metabolic pathways were purine metabolism; pyrimidine metabolism; alanine, aspartate, and glutamate metabolism; amino acid biosynthesis; aminoacyl-tRNA biosynthesis; and ABC transporters. Differential metabolites were xanthine, deoxyadenosine, uracil, 5-methylcytosine, α-ketoglutarate, γ-aminobutyric acid, glutamate, glutamine, and tryptophan. Based on metabolomics information, the putative metabolic synthesis pathway of plantaricin Q7 was proposed. Glutamine, glutamate, and 5-methylcytosine could be critical metabolites and simulate plantaricin Q7 biosynthesis significantly (P < 0.05). Bacteriocin production was investigated by comparative metabolomics in this report, which could help to achieve higher plantaricin Q7 yield by metabolic regulation.
Collapse
Affiliation(s)
- Yushan Bu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
| | - Hui Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
| | - Jianxun Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
| | - Yinxue Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
| | - Tongjie Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
| | - Pimin Gong
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
| | - Lanwei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
| | - Shumei Wang
- College of Food Engineering, Harbin University, Harbin 150086, China
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
| |
Collapse
|
11
|
Twomey E, Hill C, Field D, Begley M. Recipe for Success: Suggestions and Recommendations for the Isolation and Characterisation of Bacteriocins. Int J Microbiol 2021; 2021:9990635. [PMID: 34257667 PMCID: PMC8249226 DOI: 10.1155/2021/9990635] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/17/2021] [Accepted: 06/09/2021] [Indexed: 12/29/2022] Open
Abstract
Bacteriocins are bacterially produced antimicrobial peptides. Although only two peptides have been approved for use as natural preservatives foods, current research is focusing on expanding their application as potential therapeutics against clinical pathogens. Our laboratory group has been working on bacteriocins for over 25 years, and during that time, we have isolated bacteriocin-producing microorganisms from a variety of sources including human skin, human faeces, and various foods. These bacteriocins were purified and characterised, and their potential applications were examined. We have also identified bioengineered derivatives of the prototype lantibiotic nisin which possess more desirable properties than the wild-type, such as enhanced antimicrobial activity. In the current communication, we discuss the main methods that were employed to identify such peptides. Furthermore, we provide a step-by-step guide to carrying out these methods that include accompanying diagrams. We hope that our recommendations and advice will be of use to others in their search for, and subsequent analysis of, novel bacteriocins, and derivatives thereof.
Collapse
Affiliation(s)
- Ellen Twomey
- Department of Biological Sciences, Munster Technological University, Cork T12 P928, Ireland
| | - Colin Hill
- School of Microbiology, University College Cork, Cork T12YT20, Ireland
- APC Microbiome Ireland, University College Cork, Cork T12YT20, Ireland
| | - Des Field
- School of Microbiology, University College Cork, Cork T12YT20, Ireland
- APC Microbiome Ireland, University College Cork, Cork T12YT20, Ireland
| | - Máire Begley
- Department of Biological Sciences, Munster Technological University, Cork T12 P928, Ireland
| |
Collapse
|
12
|
Acetate Activates Lactobacillus Bacteriocin Synthesis by Controlling Quorum Sensing. Appl Environ Microbiol 2021; 87:e0072021. [PMID: 33893120 DOI: 10.1128/aem.00720-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bacteriocins are useful for controlling the composition of microorganisms in fermented food. Bacteriocin synthesis is regulated by quorum sensing mediated by autoinducing peptides. In addition, short-chain fatty acids, especially acetic acid, reportedly regulate bacteriocin synthesis. Five histidine kinases that regulated the synthesis of bacteriocins were selected to verify their interactions with acetate. Acetate activated the kinase activity of PlnB, SppK, and HpK3 in vitro and increased the yield of their cognate bacteriocins plantaricin EF, sakacin A, and rhamnosin B in vivo. The antimicrobial activity against Staphylococcus aureus of the fermentation supernatants of Lactobacillus plantarum, Lactobacillus sakei, and Lactobacillus rhamnosus with addition of acetate increased to 298%, 198%, and 289%, respectively, compared with that in the absence of acetate. Our study elucidated the activation activity of acetate in bacteriocin synthesis, and it might provide a potential strategy to increase the production of bacteriocin produced by Lactobacillus. IMPORTANCE Bacteriocins produced by lactic acid bacteria (LAB) are particularly useful in food preservation and food safety. Bacteriocins might increase bacterial competitive advantage against the indigenous microbiota of the intestines; at the same time, bacteriocins could limit the growth of undesired microorganisms in yogurt and other dairy products. This study confirmed that three kinds of histidine kinases were activated by acetate and upregulated bacteriocin synthesis both in vitro and in vivo. The increasing yield of bacteriocins reduced the number of pathogens and increased the number of probiotics in milk. Bacteriocin synthesis activation by acetate may have a broad application in the preservation of dairy products and forage silage.
Collapse
|
13
|
García-Curiel L, Del Rocío López-Cuellar M, Rodríguez-Hernández AI, Chavarría-Hernández N. Toward understanding the signals of bacteriocin production by Streptococcus spp. and their importance in current applications. World J Microbiol Biotechnol 2021; 37:15. [PMID: 33394178 DOI: 10.1007/s11274-020-02973-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 12/01/2020] [Indexed: 12/25/2022]
Abstract
Microorganisms have developed quorum sensing (QS) systems to detect small signaling molecules that help to control access to additional nutrients and space in highly competitive polymicrobial niches. Many bacterial processes are QS-regulated; two examples are the highly related traits of the natural genetic competence state and the production of antimicrobial peptides such as bacteriocins. The Streptococcus genus is widely studied for its competence and for its ability to produce bacteriocins, as these antimicrobial peptides have significant potential in the treatment of infections caused by multiple-resistant pathogens, a severe public health issue. The transduction of a two-component system controls competence in streptococci: (1) ComD/E, which controls the competence in the Mitis and Anginosus groups, and (2) ComR/S, which performs the same function in the Bovis, Mutans, Salivarius, and Pyogenic groups. The cell-to-cell communication required for bacteriocin production in the Streptococcus groups is controlled mainly by a paralog of the ComD/E system. The relationships between pheromone signals and induction pathways are related to the bacteriocin production systems. In this review, we discuss the recent advances in the understanding of signaling and the induction of bacteriocin biosynthesis by QS regulation in streptococci. This information could aid in the design of better methods for the development and production of these antimicrobial peptides. It could also contribute to the analysis and emerging applications of bacteriocins in terms of their safety, quality, and human health benefits.
Collapse
Affiliation(s)
- Laura García-Curiel
- Cuerpo Académico de Biotecnología Agroalimentaria, Instituto de Ciencias Agropecuarias-Universidad Autónoma del Estado de Hidalgo, Tulancingo de Bravo, México
| | - Ma Del Rocío López-Cuellar
- Cuerpo Académico de Biotecnología Agroalimentaria, Instituto de Ciencias Agropecuarias-Universidad Autónoma del Estado de Hidalgo, Tulancingo de Bravo, México.
| | - Adriana Inés Rodríguez-Hernández
- Cuerpo Académico de Biotecnología Agroalimentaria, Instituto de Ciencias Agropecuarias-Universidad Autónoma del Estado de Hidalgo, Tulancingo de Bravo, México
| | - Norberto Chavarría-Hernández
- Cuerpo Académico de Biotecnología Agroalimentaria, Instituto de Ciencias Agropecuarias-Universidad Autónoma del Estado de Hidalgo, Tulancingo de Bravo, México
| |
Collapse
|
14
|
García-Cano I, Rocha-Mendoza D, Kosmerl E, Zhang L, Jiménez-Flores R. Technically relevant enzymes and proteins produced by LAB suitable for industrial and biological activity. Appl Microbiol Biotechnol 2020; 104:1401-1422. [DOI: 10.1007/s00253-019-10322-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/06/2019] [Accepted: 12/15/2019] [Indexed: 12/19/2022]
|
15
|
Liu F, Mao J, Lu T, Hua Q. Synthetic, Context-Dependent Microbial Consortium of Predator and Prey. ACS Synth Biol 2019; 8:1713-1722. [PMID: 31382741 DOI: 10.1021/acssynbio.9b00110] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Synthetic microbial consortia are a rapidly growing area of synthetic biology. So far, most consortia are designed without considering their environments; however, in nature, microbial interactions are constantly modulated by cellular contexts, which, in principle, can dramatically alter community behaviors. Here we present the construction, validation, and characterization of an engineered bacterial predator-prey consortium that involves a chloramphenicol (CM)-mediated, context-dependent cellular interaction. We show that varying the CM level in the environment can induce success in the ecosystem with distinct patterns from predator dominance to prey-predator crossover to ecosystem collapse. A mathematical model successfully captures the essential dynamics of the experimentally observed patterns. We also illustrate that such a dependence enriches community dynamics under different initial conditions and further test the resistance of the consortium to invasion with engineered bacterial strains. This work exemplifies the role of the context dependence of microbial interactions in modulating ecosystem dynamics, underscoring the importance of including contexts into the design of engineered ecosystems for synthetic biology applications.
Collapse
Affiliation(s)
- Feng Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Department of Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Junwen Mao
- Department of Physics, Huzhou University, Huzhou 313000, China
| | - Ting Lu
- Department of Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
16
|
Listeria monocytogenes and Salmonella enterica affect the expression of nisin gene and its production by Lactococcus lactis. Microb Pathog 2018; 123:28-35. [DOI: 10.1016/j.micpath.2018.06.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/12/2018] [Accepted: 06/12/2018] [Indexed: 01/09/2023]
|
17
|
Lu SY, Zhao Z, Avillan JJ, Liu J, Call DR. Autoinducer-2 Quorum Sensing Contributes to Regulation of Microcin PDI in Escherichia coli. Front Microbiol 2017; 8:2570. [PMID: 29312248 PMCID: PMC5743794 DOI: 10.3389/fmicb.2017.02570] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 12/11/2017] [Indexed: 01/07/2023] Open
Abstract
The Escherichia coli quorum sensing (QS) signal molecule, autoinducer-2 (AI-2), reaches its maximum concentration during mid-to-late growth phase after which it quickly degrades during stationary phase. This pattern of AI-2 concentration coincides with the up- then down-regulation of a recently described microcin PDI (mccPDI) effector protein (McpM). To determine if there is a functional relationship between these systems, a prototypical mccPDI-expressing strain of E. coli 25 was used to generate ΔluxS, ΔlsrACDBFG (Δlsr), and ΔlsrR mutant strains that are deficient in AI-2 production, transportation, and AI-2 transport regulation, respectively. Trans-complementation, RT-qPCR, and western blot assays were used to detect changes of microcin expression and synthesis under co-culture and monoculture conditions. Compared to the wild-type strain, the AI-2-deficient strain (ΔluxS) and -uptake negative strain (Δlsr) were >1,000-fold less inhibitory to susceptible bacteria (P < 0.05). With in trans complementation of luxS, the AI-2 deficient mutant reduced the susceptible E. coli population by 4-log, which was within 1-log of the wild-type phenotype. RT-qPCR and western blot results for the AI-2 deficient E. coli 25 showed a 5-fold reduction in mcpM transcription with an average 2-h delay in McpM synthesis. Furthermore, overexpression of sRNA micC and micF (both involved in porin protein regulation) was correlated with mcpM regulation, consistent with a possible link between QS and mcpM regulation. This is the direct first evidence that microcin regulation can be linked to quorum sensing in a Gram-negative bacterium.
Collapse
Affiliation(s)
- Shao-Yeh Lu
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, United States
| | - Zhe Zhao
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, United States.,Institute of Marine Biology, College of Oceanography, Hohai University, Nanjing, China
| | - Johannetsy J Avillan
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, United States
| | - Jinxin Liu
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, United States.,Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
| | - Douglas R Call
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, United States
| |
Collapse
|
18
|
Sadeghpour M, Veliz-Cuba A, Orosz G, Josić K, Bennett MR. Bistability and oscillations in co-repressive synthetic microbial consortia. QUANTITATIVE BIOLOGY 2017; 5:55-66. [PMID: 28713623 PMCID: PMC5508549 DOI: 10.1007/s40484-017-0100-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 02/01/2017] [Accepted: 02/12/2017] [Indexed: 12/24/2022]
Abstract
Synthetic microbial consortia are conglomerations of multiple strains of genetically engineered microbes programmed to cooperatively bring about population-level phenotypes. By coordinating their activity, the constituent strains can display emergent behaviors that are difficult to engineer into isogenic populations. To do so, strains are engineered to communicate with one another through intercellular signaling pathways. As a result, the regulatory networks that control gene transcription throughout the population are sensitive to the extracellular concentration of the signaling molecules, and hence the relative densities of constituent strains. Here, we use computational modeling to examine how the behavior of a synthetic microbial consortium results from the interplay between the population dynamics governed by cell growth and the internal transcriptional dynamics governed by cell-to-cell signaling. Specifically, we examine a synthetic microbial consortium in which two strains each produce signals that down-regulate transcription in the other. Within a single strain this regulatory topology is called a "co-repressive toggle switch" and can lead to bistability. We find that in a two-strain synthetic microbial consortium the existence and stability of different states depends on the population-level dynamics of the interacting strains. As the two strains passively compete for space within the colony, their relative fractions can fluctuate and thus alter the strengths of intercellular signals. These fluctuations can drive the consortium to alternative equilibria. Additionally, if the growth rates of the strains depend on their transcriptional states, an additional feedback loop is created that can generate relaxation oscillations. These findings demonstrate that the dynamics of microbial consortia cannot be predicted from their regulatory topologies alone, but also is determined by interactions between the strains.
Collapse
Affiliation(s)
- Mehdi Sadeghpour
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI
| | | | - Gábor Orosz
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI
| | - Krešimir Josić
- Department of Mathematics, University of Houston, Houston, TX
- Department of Biology and Biochemistry, University of Houston, Houston, TX
- Department of Biosciences, Rice University, Houston, TX
| | - Matthew R. Bennett
- Department of Biosciences, Rice University, Houston, TX
- Department of Bioengineering, Rice University, Houston, TX
| |
Collapse
|