1
|
Szabo DA, Neagu N, Teodorescu S, Apostu M, Predescu C, Pârvu C, Veres C. The Role and Importance of Using Sensor-Based Devices in Medical Rehabilitation: A Literature Review on the New Therapeutic Approaches. SENSORS (BASEL, SWITZERLAND) 2023; 23:8950. [PMID: 37960649 PMCID: PMC10648494 DOI: 10.3390/s23218950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/22/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023]
Abstract
Due to the growth of sensor technology, more affordable integrated circuits, and connectivity technologies, the usage of wearable equipment and sensing devices for monitoring physical activities, whether for wellness, sports monitoring, or medical rehabilitation, has exploded. The current literature review was performed between October 2022 and February 2023 using PubMed, Web of Science, and Scopus in accordance with P.R.I.S.M.A. criteria. The screening phase resulted in the exclusion of 69 articles that did not fit the themes developed in all subchapters of the study, 41 articles that dealt exclusively with rehabilitation and orthopaedics, 28 articles whose abstracts were not visible, and 10 articles that dealt exclusively with other sensor-based devices and not medical ones; the inclusion phase resulted in the inclusion of 111 articles. Patients who utilise sensor-based devices have several advantages due to rehabilitating a missing component, which marks the accomplishment of a fundamental goal within the rehabilitation program. As technology moves faster and faster forward, the field of medical rehabilitation has to adapt to the time we live in by using technology and intelligent devices. This means changing every part of rehabilitation and finding the most valuable and helpful gadgets that can be used to regain lost functions, keep people healthy, or prevent diseases.
Collapse
Affiliation(s)
- Dan Alexandru Szabo
- Department of Human Movement Sciences, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania;
- Department ME1, Faculty of Medicine in English, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Nicolae Neagu
- Department of Human Movement Sciences, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania;
| | - Silvia Teodorescu
- Department of Doctoral Studies, National University of Physical Education and Sports, 060057 Bucharest, Romania;
| | - Mihaela Apostu
- Department of Special Motor and Rehabilitation Medicine, National University of Physical Education and Sports, 060057 Bucharest, Romania; (M.A.); (C.P.)
| | - Corina Predescu
- Department of Special Motor and Rehabilitation Medicine, National University of Physical Education and Sports, 060057 Bucharest, Romania; (M.A.); (C.P.)
| | - Carmen Pârvu
- Faculty of Physical Education and Sports, “Dunărea de Jos” University, 63-65 Gării Street, 337347 Galati, Romania;
| | - Cristina Veres
- Department of Industrial Engineering and Management, University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
| |
Collapse
|
2
|
Measurement of Results of Functional Reach Test with Sensors: A Systematic Review. ELECTRONICS 2020. [DOI: 10.3390/electronics9071078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The test of physical conditions is important to treat and presents several diseases related to the movement. These diseases are mainly related to the physiotherapy and orthopedy, but it can be applied in a wide range of medical specialties. The Functional Reach Test is one of the most common physical tests used to measure the limit of stability that is highly important for older adults because their stability is reduced with aging. Thus, older adults are part of the population more exposed to stroke. This test may help in the measurement of the conditions related to post-stroke and stroke treatment. The movements related to this test may be recorded and recognized with the inertial sensors available in off-the-shelf mobile devices. This systematic review aims to determine how to determine the conditions related to this test, which can be detected, and which of the sensors are used for this purpose. The main contribution of this paper is to present the research on the state-of-the-art use of sensors available on off-the-shelf mobile devices to measure Functional Reach Test results. This research shows that the sensors that are used in the literature studies are inertial sensors and force sensors. The features extracted from the different studies are categorized as dynamic balance, quantitative, and raw statistics. These features are mainly used to recognize the different parameters of the test, and several accidents, including falling. The execution of this test may allow the early detection of different diseases.
Collapse
|
3
|
Montesinos L, Castaldo R, Pecchia L. Wearable Inertial Sensors for Fall Risk Assessment and Prediction in Older Adults: A Systematic Review and Meta-Analysis. IEEE Trans Neural Syst Rehabil Eng 2019. [PMID: 29522401 DOI: 10.1109/tnsre.2017.2771383] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Wearable inertial sensors have been widely investigated for fall risk assessment and prediction in older adults. However, heterogeneity in published studies in terms of sensor location, task assessed and features extracted is high, making challenging evidence-based design of new studies and/or real-life applications. We conducted a systematic review and meta-analysis to appraise the best available evidence in the field. Namely, we applied established statistical methods for the analysis of categorical data to identify optimal combinations of sensor locations, tasks, and feature categories. We also conducted a meta-analysis on sensor-based features to identify a set of significant features and their pivot values. The results demonstrated that with a walking test, the most effective feature to assess the risk of falling was the velocity with the sensor placed on the shins. Conversely, during quite standing, linear acceleration measured at the lower back was the most effective combination of feature-placement. Similarly, during the sit-to-stand and/or the stand-to-sit tests, linear acceleration measured at the lower back seems to be the most effective feature-placement combination. The meta-analysis demonstrated that four features resulted significantly higher in fallers: the root-mean-square acceleration in the mediolateral direction during quiet standing with eyes closed [Mean Difference (MD): 0.01 g; 95% Confidence Interval (CI95%): 0.006 to 0.014]; the number of steps (MD: 1.638 steps; CI95%: 0.384 to 2.892) and total time (MD: 2.274 seconds; CI95%: 0.531 to 4.017) to complete the timed up and go test; and the step time (MD: 0.053; CI95%: 0.012 to 0.095; p = 0.01) during walking.
Collapse
|