Lou Y, Wan X, Pang Y. Nano-optical trapping using an all-dielectric optical fiber supporting a TEM-like mode.
NANOTECHNOLOGY 2021;
33:045201. [PMID:
34530419 DOI:
10.1088/1361-6528/ac2766]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Fiber optical tweezers benefit from compact structures and compatibility with fiber optic technology, however, trapping of nano-objects are rarely demonstrated. Here, we predict stable optical trapping of a 30 nm polystyrene particle using an all-dielectric coaxial optical fiber supporting an axisymmetric TEM-like mode. We demonstrate, via comprehensive finite-difference time-domain simulations, that the trapping behavior arises from a significant shift of the fiber-end-fire radiation directivity originated from the nanoparticle-induced symmetry breaking, rather than the gradient force which assumes an invariant optical field. Fabrication of the fiber involved is entirely feasible with existing techniques, such as thermal-drawn and electrospinning, and therefore can be mass-produced.
Collapse