1
|
Akolawala Q, Accardo A. Engineered Cell Microenvironments: A Benchmark Tool for Radiobiology. ACS APPLIED MATERIALS & INTERFACES 2025; 17:5563-5577. [PMID: 39813590 PMCID: PMC11788991 DOI: 10.1021/acsami.4c20455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/02/2025] [Accepted: 01/09/2025] [Indexed: 01/18/2025]
Abstract
The development of engineered cell microenvironments for fundamental cell mechanobiology, in vitro disease modeling, and tissue engineering applications increased exponentially during the last two decades. In such context, in vitro radiobiology is a field of research aiming at understanding the effects of ionizing radiation (e.g., X-rays/photons, high-speed electrons, and high-speed protons) on biological (cancerous) tissues and cells, in particular in terms of DNA damage leading to cell death. Herein, the perspective provides a comparative assessment overview of scaffold-free, scaffold-based, and organ-on-a-chip models for radiobiology, highlighting opportunities, limitations, and future pathways to improve the currently existing approaches toward personalized cancer medicine.
Collapse
Affiliation(s)
- Qais Akolawala
- Department
of Precision and Microsystems Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The
Netherlands
- Holland
Proton Therapy Center (HollandPTC), Huismansingel 4, 2629 JH Delft, The Netherlands
| | - Angelo Accardo
- Department
of Precision and Microsystems Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The
Netherlands
| |
Collapse
|
2
|
Akolawala Q, Keuning F, Rovituso M, van Burik W, van der Wal E, Versteeg HH, Rondon AMR, Accardo A. Micro-Vessels-Like 3D Scaffolds for Studying the Proton Radiobiology of Glioblastoma-Endothelial Cells Co-Culture Models. Adv Healthc Mater 2024; 13:e2302988. [PMID: 37944591 PMCID: PMC11468971 DOI: 10.1002/adhm.202302988] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/30/2023] [Indexed: 11/12/2023]
Abstract
Glioblastoma (GBM) is a devastating cancer of the brain with an extremely poor prognosis. While X-ray radiotherapy and chemotherapy remain the current standard, proton beam therapy is an appealing alternative as protons can damage cancer cells while sparing the surrounding healthy tissue. However, the effects of protons on in vitro GBM models at the cellular level, especially when co-cultured with endothelial cells, the building blocks of brain micro-vessels, are still unexplored. In this work, novel 3D-engineered scaffolds inspired by the geometry of brain microvasculature are designed, where GBM cells cluster and proliferate. The architectures are fabricated by two-photon polymerization (2PP), pre-cultured with endothelial cells (HUVECs), and then cultured with a human GBM cell line (U251). The micro-vessel structures enable GBM in vivo-like morphologies, and the results show a higher DNA double-strand breakage in GBM monoculture samples when compared to the U251/HUVECs co-culture, with cells in 2D featuring a larger number of DNA damage foci when compared to cells in 3D. The discrepancy in terms of proton radiation response indicates a difference in the radioresistance of the GBM cells mediated by the presence of HUVECs and the possible induction of stemness features that contribute to radioresistance and improved DNA repair.
Collapse
Affiliation(s)
- Qais Akolawala
- Department of Precision and Microsystems EngineeringFaculty of MechanicalMaritime and Materials EngineeringDelft University of TechnologyMekelweg 22628 CDDelftThe Netherlands
- Holland Proton Therapy Center (HollandPTC)Huismansingel 42629 JHDelftThe Netherlands
| | - Floor Keuning
- Erasmus University CollegeNieuwemarkt 1A, Rotterdam3011 HPRotterdamThe Netherlands
| | - Marta Rovituso
- Holland Proton Therapy Center (HollandPTC)Huismansingel 42629 JHDelftThe Netherlands
| | - Wouter van Burik
- Holland Proton Therapy Center (HollandPTC)Huismansingel 42629 JHDelftThe Netherlands
| | - Ernst van der Wal
- Holland Proton Therapy Center (HollandPTC)Huismansingel 42629 JHDelftThe Netherlands
| | - Henri H. Versteeg
- Einthoven Laboratory for Vascular and Regenerative MedicineDivision of Thrombosis and HemostasisDepartment of Internal MedicineLeiden University Medical CenterAlbinusdreef 22333 ZALeidenThe Netherlands
| | - Araci M. R. Rondon
- Einthoven Laboratory for Vascular and Regenerative MedicineDivision of Thrombosis and HemostasisDepartment of Internal MedicineLeiden University Medical CenterAlbinusdreef 22333 ZALeidenThe Netherlands
| | - Angelo Accardo
- Department of Precision and Microsystems EngineeringFaculty of MechanicalMaritime and Materials EngineeringDelft University of TechnologyMekelweg 22628 CDDelftThe Netherlands
| |
Collapse
|
3
|
Akolawala Q, Rovituso M, Versteeg HH, Rondon AMR, Accardo A. Evaluation of Proton-Induced DNA Damage in 3D-Engineered Glioblastoma Microenvironments. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20778-20789. [PMID: 35442634 PMCID: PMC9100514 DOI: 10.1021/acsami.2c03706] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Glioblastoma (GBM) is a devastating cancer of the brain with an extremely poor prognosis. For this reason, besides clinical and preclinical studies, novel in vitro models for the assessment of cancer response to drugs and radiation are being developed. In such context, three-dimensional (3D)-engineered cellular microenvironments, compared to unrealistic two-dimensional (2D) monolayer cell culture, provide a model closer to the in vivo configuration. Concerning cancer treatment, while X-ray radiotherapy and chemotherapy remain the current standard, proton beam therapy is an appealing alternative as protons can be efficiently targeted to destroy cancer cells while sparing the surrounding healthy tissue. However, despite the treatment's compelling biological and medical rationale, little is known about the effects of protons on GBM at the cellular level. In this work, we designed novel 3D-engineered scaffolds inspired by the geometry of brain blood vessels, which cover a vital role in the colonization mechanisms of GBM cells. The architectures were fabricated by two-photon polymerization (2PP), cultured with U-251 GBM cells and integrated for the first time in the context of proton radiation experiments to assess their response to treatment. We employed Gamma H2A.X as a fluorescent biomarker to identify the DNA damage induced in the cells by proton beams. The results show a higher DNA double-strand breakage in 2D cell monolayers as compared to cells cultured in 3D. The discrepancy in terms of proton radiation response could indicate a difference in the radioresistance of the GBM cells or in the rate of repair kinetics between 2D cell monolayers and 3D cell networks. Thus, these biomimetic-engineered 3D scaffolds pave the way for the realization of a benchmark tool that can be used to routinely assess the effects of proton therapy on 3D GBM cell networks and other types of cancer cells.
Collapse
Affiliation(s)
- Qais Akolawala
- Department
of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, 2628
CD Delft, The Netherlands
| | - Marta Rovituso
- Holland
Proton Therapy Center (HollandPTC), Huismansingel 4, 2629 JH Delft, The Netherlands
| | - Henri H. Versteeg
- Einthoven
Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis
and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Araci M. R. Rondon
- Einthoven
Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis
and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Angelo Accardo
- Department
of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, 2628
CD Delft, The Netherlands
- . Tel: +31 (0)15 27 81610
| |
Collapse
|
4
|
Mohajer JK, Nisbet A, Velliou E, Ajaz M, Schettino G. Biological effects of static magnetic field exposure in the context of MR-guided radiotherapy. Br J Radiol 2018; 92:20180484. [PMID: 30359096 DOI: 10.1259/bjr.20180484] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The clinical introduction of MRI-guided radiotherapy has prompted consideration of the potential impact of the static magnetic field on biological responses to radiation. This review provides an introduction to the mechanisms of biological interaction of radiation and magnetic fields individually, in addition to a description of the magnetic field effects on megavoltage photon beams at the macroscale, microscale and nanoscale arising from the Lorentz force on secondary charged particles. A relatively small number of scientific studies have measured the impact of combined static magnetic fields and ionising radiation on biological endpoints of relevance to radiotherapy. Approximately, half of these investigations found that static magnetic fields in combination with ionising radiation produced a significantly different outcome compared with ionising radiation alone. strength static magnetic fields appear to modestly influence the radiation response via a mechanism distinct from modification to the dose distribution. This review intends to serve as a reference for future biological studies, such that understanding of static magnetic field plus ionising radiation synergism may be improved, and if necessary, accounted for in MRI-guided radiotherapy treatment planning.
Collapse
Affiliation(s)
- Jonathan Kim Mohajer
- 1 Department of Physics, University of Surrey , Guildford , UK.,2 Medical Radiation Science group, National Physical Laboratory , Teddington , UK
| | - Andrew Nisbet
- 1 Department of Physics, University of Surrey , Guildford , UK.,3 The Royal Surrey County Hospital NHS Foundation Trust , Guildford , UK
| | - Eirini Velliou
- 4 Department of Chemical and Process Engineering, Bioprocess and Biochemical Engineering group (BioProChem), University of Surrey , Guildford , UK
| | - Mazhar Ajaz
- 3 The Royal Surrey County Hospital NHS Foundation Trust , Guildford , UK.,5 Department of Microbial and Cellular Sciences, University of Surrey , Guildford , UK
| | - Giuseppe Schettino
- 1 Department of Physics, University of Surrey , Guildford , UK.,2 Medical Radiation Science group, National Physical Laboratory , Teddington , UK
| |
Collapse
|
5
|
Totti S, Vernardis SI, Meira L, Pérez-Mancera PA, Costello E, Greenhalf W, Palmer D, Neoptolemos J, Mantalaris A, Velliou EG. Designing a bio-inspired biomimetic in vitro system for the optimization of ex vivo studies of pancreatic cancer. Drug Discov Today 2017; 22:690-701. [PMID: 28153670 DOI: 10.1016/j.drudis.2017.01.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/16/2016] [Accepted: 01/18/2017] [Indexed: 12/13/2022]
Abstract
Pancreatic cancer is one of the most aggressive and lethal human malignancies. Drug therapies and radiotherapy are used for treatment as adjuvants to surgery, but outcomes remain disappointing. Advances in tissue engineering suggest that 3D cultures can reflect the in vivo tumor microenvironment and can guarantee a physiological distribution of oxygen, nutrients, and drugs, making them promising low-cost tools for therapy development. Here, we review crucial structural and environmental elements that should be considered for an accurate design of an ex vivo platform for studies of pancreatic cancer. Furthermore, we propose environmental stress response biomarkers as platform readouts for the efficient control and further prediction of the pancreatic cancer response to the environmental and treatment input.
Collapse
Affiliation(s)
- Stella Totti
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Spyros I Vernardis
- Biological Systems Engineering Laboratory (BSEL), Department of Chemical Engineering, Imperial College London, SW7 2AZ London, UK
| | - Lisiane Meira
- Department of Clinical and Experimental Medicine, University of Surrey, Guildford GU2 7XH, UK
| | - Pedro A Pérez-Mancera
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool,Daulby Street, Liverpool L69 3GA, UK
| | - Eithne Costello
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool,Daulby Street, Liverpool L69 3GA, UK; NIHR Liverpool Pancreas Biomedical Research Unit, University of Liverpool,Daulby Street, Liverpool L69 3GA, UK
| | - William Greenhalf
- NIHR Liverpool Pancreas Biomedical Research Unit, University of Liverpool,Daulby Street, Liverpool L69 3GA, UK
| | - Daniel Palmer
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool,Daulby Street, Liverpool L69 3GA, UK
| | - John Neoptolemos
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool,Daulby Street, Liverpool L69 3GA, UK; NIHR Liverpool Pancreas Biomedical Research Unit, University of Liverpool,Daulby Street, Liverpool L69 3GA, UK
| | - Athanasios Mantalaris
- Biological Systems Engineering Laboratory (BSEL), Department of Chemical Engineering, Imperial College London, SW7 2AZ London, UK
| | - Eirini G Velliou
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK.
| |
Collapse
|