1
|
Significant Loss of Ecosystem Services by Environmental Changes in the Mediterranean Coastal Area. FORESTS 2022. [DOI: 10.3390/f13050689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mediterranean coastal areas are among the most threated forest ecosystems in the northern hemisphere due to concurrent biotic and abiotic stresses. These may affect plants functionality and, consequently, their capacity to provide ecosystem services. In this study, we integrated ground-level and satellite-level measurements to estimate the capacity of a 46.3 km2 Estate to sequestrate air pollutants from the atmosphere, transported to the study site from the city of Rome. By means of a multi-layer canopy model, we also evaluated forest capacity to provide regulatory ecosystem services. Due to a significant loss in forest cover, estimated by satellite data as −6.8% between 2014 and 2020, we found that the carbon sink capacity decreased by 34% during the considered period. Furthermore, pollutant deposition on tree crowns has reduced by 39%, 46% and 35% for PM, NO2 and O3, respectively. Our results highlight the importance of developing an integrated approach combining ground measurements, modelling and satellite data to link air quality and plant functionality as key elements to improve the effectiveness of estimate of ecosystem services.
Collapse
|
2
|
Contrasting Trends of Forest Coverage between the Inland and Coastal Urban Groups of China over the Past Decades. SUSTAINABILITY 2019. [DOI: 10.3390/su11164451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
China is building forest urban groups through reforestation and afforestation. However, the fast process of urbanization inevitably conflicts with multiple vegetated areas around cities. Hence, it is critical to evaluate the changes in regional vegetation cover and its spatial pattern due to complex natural and anthropogenic factors. Nevertheless, systematic studies to quantify and compare the development of forest urban agglomerations were rarely reported. Based on a remote sensing landcover dataset from 1992 to 2015, this study investigated forest cover changes and the impacts on landscape pattern in several urban groups, and tried to explore their differences between the inland and coastal regions of China. The results showed that over the past 24 years, the forest coverage in the coastal urban agglomerations declined (103 km2/year) while it increased (26 km2/year) in the inland urban agglomerations. There was a certain conflict between forest and cropland for the coastal urban agglomerations where the forest area converted to cropland accounted for 61.9% of the total forest loss. The increase in forests coverage in inland urban agglomerations mainly came from grassland which nearly accounted for 66.47% of the total increase. The landscape diversity has also changed in areas where forests have changed significantly (e.g., Shanghai, Changzhi, and Jincheng).
Collapse
|
3
|
Monitoring Mediterranean Oak Decline in a Peri-Urban Protected Area Using the NDVI and Sentinel-2 Images: The Case Study of Castelporziano State Natural Reserve. SUSTAINABILITY 2018. [DOI: 10.3390/su10093308] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Climate change and human activities in particular are important causes of the possible variations in Mediterranean basin forest health conditions. Over the last decades, deciduous oak-forest mortality has been a recurrent problem in central and southern Italy. Despite the perception of increasingly visible damage in oak forests in drought sites, the role of various environmental factors in their decline is not completely clear. Among the modern methods of monitoring terrestrial ecosystems, remote sensing is of prime importance thanks to its ability to provide synoptic information on large areas with a high frequency of acquisition. This paper reports the preliminary results regarding a replicable and low cost monitoring tool planned to quantify forest health conditions based on the application of the Normalized Difference Vegetation Index (NDVI), using the diachronic images provided by the Sentinel-2 satellite. The study area is represented by a peri-urban forest of natural Mediterranean deciduous oaks, characterized by a high variability in the composition of the species and in the silvicultural structures. In order to monitor the health conditions of a specific forest canopy cover with remote sensing data, it is necessary to classify the forest canopy cover in advance to separate it from other species and from the Mediterranean scrub. This is due to the spatial distribution of vegetation and the high rate of biodiversity in the Mediterranean natural environment. To achieve this, Light Detection and Ranging (LiDAR) data, forest management data and field sampling data were analyzed. The main results of this research show a widespread decline in oak health conditions over the observed period (2015–2017). Specifically, for the studied area, thanks to the specific localization of the oak canopy cover, we detected a high potential concerning the Sentinel-2 data application in monitoring forest health conditions by NDVI application.
Collapse
|
4
|
Göl C. Effects of aspect and changes in land use on organic carbon and soil properties in Uludere catchment, semi-arid region: Turkey. RENDICONTI LINCEI 2017. [DOI: 10.1007/s12210-017-0619-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Energy Supply, Thermodynamics and Territorial Processes as a New Paradigm of Sustainability in Planning Science and Practice. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/978-3-319-31157-9_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|